
Part 4: High
Let us drink and be merry, dance, joke, and rejoice,
With claret and sherry, theorbo and voice!
The changeable world to our joy is unjust,

All treasure ’s uncertain,
Then down with your dust!

In frolics dispose your pounds, shillings, and pence,
For we shall be nothing a hundred years hence.

We’ll sport and be free with Moll, Betty, and Dolly,
Have oysters and lobsters to cure melancholy:
Fish-dinners will make a man spring like a flea,

Dame Venus, love’s lady,
Was born of the sea;

With her and with Bacchus we’ll tickle the sense,
For we shall be past it a hundred years hence.

Then why should we turmoil in cares and in fears,
Turn all our tranquill’ty to sighs and to tears?
Let ’s eat, drink, and play till the worms do corrupt us,

’Tis certain, Post mortem
Nulla voluptas.

For health, wealth and beauty, wit, learning and sense,
Must all come to nothing a hundred years hence.

Coronemus nos Rosis antequam marcescant (1675), Thomas Jordan (c1612 – 1685).

Image 8.5: The Garden of Earthly Delights (1503 – 1504), Hieronymus Bosch (c. 1450 – 1516), Museo del
Prado, Madrid. (Source: en.wikipedia.org)
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Chapter 9: Sex, drugs and rates of change

I met with a gal and we went on a spree

She taught me to smoke and to drink whuskey.

Cigareets and whuskey and wild wild women

They’ll drive you crazy, they’ll drive you insane,

Cigareets and whuskey and wild wild women

They’ll drive you crazy, they’ll drive you insane.

And now I’m feeble and broken with age

The lines on my face make a well written page.

I’m leavin’ this story how sad but how true

On women and whuskey and what they will do.

Artist: Jim Croce (www.youtube.com/watch?v=yVw96wzmZC8)

Image 9.1: Skull with a burning cigarette (c1885), Vincent van Gogh (1853 – 1890), Van Gogh Museum,
Amsterdam. (Source: en.wikipedia.org)
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE

9.1 Pharmacokinetics and rates of change

Some drug-related terminology

Broadly speaking, a drug is usually defined to be any externally derived

chemical substance introduced into an organism that affects the function

of the organism. Drugs may enhance physical or mental well-being, and

include both medicinal and so-called recreational drugs.

Pharmacology studies the properties of drugs and their effects on living

organisms.

Pharmacokinetics studies what happens to drugs inside the body, partic-

ularly the extent and rates of absorption, distribution, metabolism

and excretion.

Pharmacodynamics studies the interaction of drugs with the cells of the

body. (We will not cover pharmacodynamics in SCIE1000; there are many

other courses in which it is studied.)

Drug concentrations

After the administration of a drug, a key determinant of its impact on the

body is the drug concentration in the bloodstream, which is commonly

measured as mass per volume (such as mg/L).

Typically, concentrations are measured (or predicted) at various times after

drug administration, and are displayed graphically using a drug concentra-

tion curve.

• Mathematics and functions are particularly important when modelling the

change in drug concentrations over time, as they help to predict the impact

of the drug and the timing of subsequent interventions.
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE Case Study 19: Zoloft and depression

Case Study 19:

Zoloft and depression

Figure 9.1: Age-specific prevalence of mental disorders and depression in Australian adults.

• Zoloft (and a number of generically branded equivalents) is the brand

name of the drug sertraline hydrochloride, which is an antidepressant of

the SSRI class (Selective Serotonin Reuptake Inhibitor).

• The Consumer Medicine Information fact sheet explains that SSRIs “. . . are

thought to work by blocking the uptake of a chemical called serotonin into

nerve cells in the brain. Serotonin and other chemicals called amines are

involved in controlling mood”.

• Zoloft is the most commonly prescribed antidepressant in Australia, and

one of the most prescribed drugs overall on the Australian Pharmaceutical

Benefits Scheme.

• Zoloft is taken orally as a pill. The usual dosage ranges from 25 mg per

day to 200 mg per day.

• Zoloft has a number of comparatively mild side effects (including insomnia,

loss of appetite, and some sexual impairment), and is generally believed to

be both effective and well tolerated.

• However, there has been media controversy in recent years about the pos-

sible adverse impacts of SSRIs on a small number of people.
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE Case Study 19: Zoloft and depression

Example 9.1.1

When recommending a dosage of a therapeutic drug, pharmacologists need

to consider a range of physiological factors, including:

• how rapidly the drug is absorbed;

• whether it should be taken with food;

• how often a dose needs to be administered;

• what proportion of the administered drug is absorbed;

• how quickly the drug disperses throughout the body;

• how the drug is metabolised;

• what drug concentration is required to achieve the desired effect, and

for how long; and

• how rapidly the drug is excreted.

Using concentration graphs, pharmacologists will observe and measure:

(a) the peak concentration;

(b) the time at which peak concentration occurs;

(c) the half-life of the drug, which is the time taken for the concentration

to fall to half of its previous value;

(d) the minimum effective concentration, below which the drug does not

have the desired therapeutic effect;

(e) the maximum rate of drug absorption and when it occurs;

(f) the maximum rate of drug removal and when it occurs;

(g) a possible “danger level” of drug concentration, above which the person

may require monitoring; and

(h) the “total exposure” of the body to the drug.

Understanding rates of change and the associated mathematical functions

plays an important role in determining the best way to analyse the above

factors.
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE Case Study 19: Zoloft and depression

Question 9.1.2

Figure 9.2 shows an idealised drug concentration curve (we will see later

that many drugs have concentration curves with this general shape). Mark

on the graph the values (or possible values) of each of (a) to (h) described

in Example 9.1.1.

Figure 9.2: An idealised drug concentration curve.

• Compare the information on Zoloft in the following example with some of

the features/observations in Example 9.1.1.
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE Case Study 19: Zoloft and depression

Example 9.1.3
(The following is taken from the sertraline fact sheet at www.pbs.gov.au.)

“Pharmacokinetics:

In humans, following oral once-daily dosing over the range of 50 to

200 mg for 14 days, mean peak plasma concentrations (Cmax) of

sertraline occurred between 4.5 to 8.4 hours post dosing.

The average terminal elimination half-life of plasma sertraline is

(continued over)
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE

Example 9.1.3 (continued)

about 26 hours. Based on this pharmacokinetic parameter, steady-

state sertraline plasma levels should be achieved after approxi-

mately one week of once-daily dosing. Linear dose-proportional

pharmacokinetics were demonstrated in a single dose study in which

the Cmax and area under the plasma concentration time curve

(AUC) of sertraline were proportional to dose over a range of 50 to

200 mg.

Dosage: Adults (18 years and older)

The usual therapeutic dose for depression is 50 mg/day. . . . patients

not responding to a 50 mg/day dose may benefit from dose increases

up to a maximum of 200 mg/day. Given the 24 hour elimination

half-life of sertraline, dose changes should not occur at intervals of

less than 1 week. The onset of therapeutic effect may be seen within

7 days . . . .

Use in Children and Adolescents aged less than 18 years:

Sertraline should not be used in children and adolescents below the

age of 18 years for the treatment of major depressive disorder. The

efficacy and safety of sertraline has not been satisfactorily estab-

lished for the treatment of major depressive disorder in this age

group.

Overdosage:

On the evidence available, sertraline has a wide margin of safety

in overdose. Overdoses of sertraline alone of up to 13.5 g have

been reported. Deaths have been reported involving overdoses of

sertraline, primarily in combination with other drugs . . . .”

End of Case Study 19.
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§9.1. PHARMACOKINETICS AND RATES OF CHANGE

• Pharmacokinetics is particularly concerned with the rate at which the drug

concentration changes.

• The concept of one quantity changing as another quantity changes, and the

rate at which the change occurs, is crucial to understanding and modelling

many processes in science, engineering, social sciences and economics.

Example 9.1.4

In addition to explaining the dynamics of drug concentrations in the body,

analysing rates of change is important for solving problems such as:

• landing a space capsule on the moon with minimum fuel usage;

• predicting the spread of ash from a volcanic eruption;

• modelling earthquakes and tsunamis, and predicting which areas will

be affected, and when;

• predicting future populations of two interacting species;

• estimating the impact of a vaccination program on the spread of a

disease;

• predicting the impact of a constricted artery on blood flow;

• minimising risk in a share portfolio;

• determining the time taken to reach equilibrium in a chemical reaction;

and

• predicting the time at which a student will attain a certain threshold

level of knowledge about a topic.

• We will cover two methods for analysing rates of change:

– average rates of change; and

– exact rates of change.
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§9.2. AVERAGE RATES OF CHANGE Case Study 20: Cigarettes

9.2 Average rates of change

• The average rate of change measures the average change between two

observed values of some phenomenon.

• In science, average rates of change are usually measured over time, such as

60 m s−1.

Average rate of change

Let (x1, y1) and (x2, y2) be two points. The average rate of change of

y with respect to x between these points is the slope of the straight line

joining the points. As we saw earlier, the slope equals the change in y values

divided by the change in x values, so:

change in y

change in x
=

∆y

∆x
=
y2 − y1

x2 − x1
.

(Note that ∆ is the Greek capital letter “Delta”, and usually means “the

change in the value of”.)

),( 2x 2y

),( 1x 1y

Figure 9.3: Average rate of change.

Example 9.2.1

The concentration of atmospheric CO2 has risen by about 70 ppm over the

last 50 years. Hence the average rate of change over this time is:

70 ppm

50 years
= 1.4 ppm year−1.
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§9.2. AVERAGE RATES OF CHANGE Case Study 20: Cigarettes

Case Study 20:

Cigarettes

Photo 9.1: Cool, sophisticated smoker! (Source: PA.)

• Nicotine is a highly addictive, poisonous alkaloid found in a number of

plants, including tobacco.

• After inhaling tobacco smoke, nicotine typically enters your blood stream

within five seconds, and reaches your brain after about 10 seconds.

• In addition to nicotine, tobacco products also contain a large number of

other compounds (including heavy metals, poisons and radioactive mate-

rials), many of which are toxic or known carcinogens.

Photo 9.2: “Smoking kills”: the joy of cigarette smoke. (Source: PA.)
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§9.2. AVERAGE RATES OF CHANGE Case Study 20: Cigarettes

• Smoking is a risk factor for many types of cancer. Figure 9.4 shows the pro-

portions of various cancers in Australians directly attributable to smoking;

see [1].

Cancer site Male % Female % Cancer site Male % Female %

Lung 89 70 Larynx 69 60
Oral cancers 52 42 Renal pelvis 51 43
Oesophagus 50 41 Anus 39 29
Bladder 38 28 Vulva − 32
Pancreas 23 16 Penis 21 −
Kidney 17 12 Stomach 12 8

Figure 9.4: Proportions of various cancers that are directly attributable to smoking.

• From 1991 to 2001, the male incidence rate for cancers attributable to

smoking fell by an average of 1.4% per year, while the rate for females rose

by 0.7% per year.

• Over the same period, mortality rates fell by 1.9% per annum for males

and rose by around 0.1% per annum for females.

• Smoking is also a major risk factor for morbidity and mortality from other

causes.

• As we saw earlier, in 1960 the Framingham Heart Study showed that smok-

ing increases the risk of heart disease.

• Around 17% of all deaths from heart disease are due to smoking.

• Approximately 16% of Australians smoke, and there are around 15000

smoking related deaths in Australia each year.

Question 9.2.2

Figures 9.5 and 9.6 show measured blood nicotine concentrations N(t) after

smoking a cigarette, starting at time t = 0 minutes (see [3]). (Note that

measurements were taken at discrete time intervals; we show connecting

lines in the graph only for clarity.)

(continued over)
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§9.2. AVERAGE RATES OF CHANGE

Question 9.2.2 (continued)

t (min.) 0 3 6 10 14 20 35 65 95

N(t) (ng/mL) 5 11 15.4 13.4 12.8 11.3 9.8 8 7

Figure 9.5: Measured blood nicotine concentrations N(t) after smoking a cigarette.
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Figure 9.6: Graph of measured blood nicotine concentrations after smoking.

(a) Describe and explain the main features of the shape of the graph.

(b) Find the total change in concentration from t = 0 to t = 95 min.

(c) Find the average rate of change in concentration from:

(i) t = 0 to t = 95 min; and

(ii) t = 0 to t = 10 min.

End of Case Study 20.
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§9.3. DERIVATIVES AND RATES OF CHANGE

9.3 Derivatives and rates of change

• Rather than measure the average rate of change between two points, in

many situations it is more useful to measure the exact rate of change at a

point. The mathematical term for an exact rate of change is derivative.

• In SCIE1000, you will not be finding derivatives (in general), but will need

to interpret and use them.

Derivatives

If y = f (x) is a function, then the derivative y′ is a new function that gives

the exact rate at which y is changing with respect to x.

The value of the derivative at any point describes the behaviour of the

function at that point. At any point:

• if y′ is positive then the function y is increasing;

• if y′ is negative then the function y is decreasing; and

• if the function y has a local maximum (peak) or local minimum

(trough) at a point, then y′ equals zero at that point.

The derivative of the derivative, or second derivative, is denoted f ′′.

Question 9.3.1

While smoking tobacco, the body absorbs many chemical compounds in

addition to nicotine, including cyanide (which is highly toxic to humans).

Figure 9.7 shows blood cyanide concentrations after smoking a cigarette,

starting at time t = 0 minutes; see [25].

t (min.) 0 5 10 15 20 25 35 65

conc. (µg/mL) 0.11 0.43 0.21 0.16 0.14 0.15 0.125 0.1

Figure 9.7: Measured cyanide concentrations in the blood of a person after smoking a cigarette.

(continued over)
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§9.3. DERIVATIVES AND RATES OF CHANGE

Question 9.3.1 (continued)

The function C(t) = 0.1 + 0.3t0.6e−0.17t µg/mL is a reasonable model of the

measured blood cyanide concentrations. Figure 9.8 shows a plot of C(t),

along with the measured data values.
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Figure 9.8: Measured and modelled blood cyanide concentrations after smoking a cigarette.

(a) What is the physical meaning of C ′?

(b) On the graph:

(i) mark with a cross any points at which C ′ = 0;

(ii) label any local maxima/minima with the word ‘max’/‘min’;

(iii) identify all regions where C ′ is positive/negative.

(c) What is happening physically when C ′ is:

(i) positive?

(ii) zero?

(iii) negative?
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§9.4. DERIVATIVES AND NEWTON’S METHOD

9.4 Derivatives and Newton’s method

• Derivatives have many uses, such as solving equations.

Question 9.4.1

A function modelling blood concentration of an injected long-lasting female

contraceptive (medroxyprogesterone acetate or MPA) in ng/mL is C(t) =

1.4t0.15e−0.02t. The graph of C(t) is:
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MPA concentration-time curve

Figure 9.9: Modelled blood concentration after an injection of MPA.

(a) The minimum blood concentration for reliable contraception is 0.3

ng/mL. Estimate from the graph the time when reliable contraception

ceases. (For interest, injections are given every 12− 13 weeks.)

(b) Rewrite Part (a) as an equation to be solved.

(c) How could the equation in Part (b) be solved?
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§9.4. DERIVATIVES AND NEWTON’S METHOD

• Often in science, we need to solve equations that are difficult or impossible

to solve exactly.

• An alternative is to find an approximate solution, using solution-finding

algorithms.

• Solution-finding algorithms involve repeatedly applying similar mathemat-

ical steps or iterations.

• Usually, a numerical error is associated with approximate solutions cal-

culated by solution-finding algorithms.

• Numerical errors can often be reduced by performing more iterations.

• One iterative solution-finding algorithm is Newton’s method, which uses

– an initial estimate of a solution; and

– a derivative

to find a solution of a function.

• Newton’s method does not always converge to a solution, but will usually

converge if the initial estimate is ‘good enough’.

Newton’s method (informal description)

To find a solution for f (x), that is a value of x for which f (x) = 0, Newton’s

method proceeds as follows:

1. Choose an initial estimate of the solution.

2. Calculate a new estimate of the solution using the old estimate and

the derivative. (The new estimate is hopefully more accurate than the

previous one.)

3. Stop if the new estimate is sufficiently accurate or if too many steps

have been taken. Otherwise, return to Step 2.
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§9.4. DERIVATIVES AND NEWTON’S METHOD

• Note that Newton’s method only solves equations of the form f (x) = 0.

• Before applying Newton’s method, the equation may need rearranging into

an equivalent equation with zero on the right hand side.

• For example, in Part (b) of Question 9.4.1, we rearranged the equation to

C(t) = 0.3.

• To use Newton’s method we instead solve C(t)− 0.3 = 0.

Newton’s method (formal description)

To find a solution for f (x), that is a value of x for which f (x) = 0, Newton’s

method proceeds as follows:

1. Let x0 be an initial estimate of a solution of f that is ‘sufficiently close’

to an actual solution of f . At the ith iteration (i = 0, 1, 2, . . .), xi is

the current approximation of the actual solution.

2. Calculate the next estimate: xi+1 = xi −
f (xi)

f ′(xi)

3.(a) If the value of xi+1 is sufficiently accurate then stop; xi+1 is the

estimated solution.

(b) If xi+1 is not sufficiently accurate after a certain number of steps then

stop, because the method is probably not converging to a solution.

Choose a ‘better’ value for x0 and start again.

(c) Otherwise, return to Step 2.

• Newton’s method is based on equations of straight lines and average rates

of change!

• Let the initial estimate of an unknown solution of f (x) be x0. Newton’s

method calculates the next estimate x1 by extending a line from the point
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§9.4. DERIVATIVES AND NEWTON’S METHOD

(x0, f (x0)) to the x-axis, with the slope of the line equal to the value of

the derivative f ′ at the point x0; see Figure 9.10.

• Rearranging the formula for the equation of a line gives Newton’s method.

Optional: To see how, consider the straight line joining the points (x0, f (x0))

and (x1, 0).

The gradient is f ′(x0), which must also equal
f (x0)− 0

x0 − x1
.

Thus f ′(x0) =
f (x0)

x0 − x1
, so x1 = x0 −

f (x0)

f ′(x0)
, which is Newton’s method.

012 xxxr

))0x(0,x( f

Figure 9.10: An illustration of two steps of Newton’s method.

• If x0 is sufficiently close to the solution, then the new approximation x1

will be closer to the solution than x0 was.

• These steps continue until either Newton’s method finds a sufficiently ac-

curate approximation to the solution, or the process has taken too many

steps without converging to a solution.
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§9.4. DERIVATIVES AND NEWTON’S METHOD

Example 9.4.2

Use Newton’s method to estimate x =
√

12.

Let f (x) = x2−12. Then solving f (x) = 0 is the same as finding x =
√

12.

To apply Newton’s method, we first need to find the derivative and then

choose an initial estimate of the solution:

• Because f (x) = x2 − 12, we have f ′(x) = 2x.

• We know that
√

12 is between 3 and 4, so we will use x0 = 3 as the

initial estimate of the solution. (We could choose other estimates but

x0 = 3 is likely to be “close” to the solution.)

Now we have everything we need to use Newton’s method. Recall that the

equation for finding the next estimate of the solution is:

xi+1 = xi −
f (xi)

f ′(xi)
.

Performing three steps of Newton’s method gives the results shown in Figure

9.11, with the last column showing the sequence of approximations to the

solution.

i xi f(xi) f ′(xi) xi+1

0 3 −3 6 3.5
1 3.5 0.25 7 3.4642857
2 3.4642857 0.001275 6.92857 3.4641016

Figure 9.11: Three iterations of Newton’s method to find
√

12.

After three steps, the estimate of
√

12 is x3 = 3.4641016. Note that:

• The estimated solution barely changed between x2 and x3.

• The estimate of the solution is quite accurate; in fact, x3 is correct to

seven decimal places.
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 21: Whisky

9.5 Pleasures of the flesh and derivatives

Image 9.2: “Who does not love wine, wife and song will be a fool for his lifelong!”. (Kimmel and Voigt,
New York, 1873. Source: en.wikipedia.org.)

• We will now study derivatives in the context of drug concentration graphs.

Case Study 21:

Whisky

• A standard drink contains 10 g of alcohol.

• Usually, the measure of Blood Alcohol Concentration (BAC) is the per-

centage of total blood volume that is alcohol (or equivalently, grams of

alcohol per litre of blood). In Australia the legal blood alcohol content for

driving is 0.05%, or 0.5 g/L.
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 21: Whisky

• Unlike many other drugs, the rate of alcohol metabolism is roughly constant

(called a zero-order reaction in Chemistry).

• The rate of metabolism is usually independent of the BAC because typical

levels of alcohol consumption saturate the metabolising capacity of enzymes

within the liver.

Photo 9.3: Calf liver. (Source: PA.)

• The exact rate of metabolism varies between individuals, influenced by

factors such as age, mass (weight) and gender.

• A graph of BAC from the time drinking commenced will show a rapid

initial rise during the absorption phase, prior to a decline in concentration

during the elimination phase.

• Because the rate of alcohol metabolism tends to be constant, a graph of

BAC from the time of peak concentration shows a linear decline until

metabolism is almost complete.

Photo 9.4: Only in Poland. (Source: PA.)
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 21: Whisky

Question 9.5.1

Figure 9.12 shows some BAC measurements (see [46]). Let B(t) represent

the straight line modelling the BAC from t = 1 h to t = 6 h.
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Blood alcohol concentration after consuming a controlled dose of alcohol

Figure 9.12: Measured blood alcohol concentrations.

(a) Find an equation for B(t).

(b) Find B′(t) (include units).

(c) Interpret, in words, what B′(t) represents.
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 21: Whisky

Question 9.5.2

Figure 9.13 estimates the time required for the BAC of males and females

of different masses (weights) to return to zero. (These values are published

by the United States Government. To convert from pounds to kg, divide by

2.2.)

Males:

num. Mass (pounds)
drinks 120 140 160 180 200 220 240 260

1 2 2 2 1.5 1 1 1 1
2 4 3.5 3 3 2.5 2 2 2
3 6 5 4.5 4 3.5 3.5 3 3
4 8 7 6 5.5 5 4.5 4 3.5
5 10 8.5 7.5 6.5 6 5.5 5 4.5

Females:

num. Mass (pounds)
drinks 120 140 160 180 200 220 240 260

1 3 2.5 2 2 2 1.5 1.5 1
2 6 5 4 4 3.5 3 3 2.5
3 9 7.5 6.5 5.5 5 4.5 4 4
4 12 9.5 8.5 7.5 6.5 6 5.5 5
5 15 12 10.5 9.5 8 7.5 7 6

Figure 9.13: The time (in hours) for BACs to return to zero.

(a) Typically, after all (or most) alcohol has been absorbed, BACs decrease

in an approximately linear fashion (see Figure 9.12). How is this appar-

ent in Figure 9.13?

(b) Using the information in Figure 9.13, comment on the value of B′(t) for

(continued over)
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 21: Whisky

Question 9.5.2 (continued)

different genders and body masses (weights).

(c) In an experiment, Peter used a commercial breathalyser to monitor

the BACs of two females who each consumed approximately 4 standard

drinks (38 g of alcohol) over an hour. Figure 9.15 shows the experimental

data.

Figure 9.14: Breathalyser.
(Source: MG.)
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Figure 9.15: Measured blood alcohol concentrations.

Comment on the graphs in Figure 9.15, highlighting both the expected

(continued over)
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Question 9.5.2 (continued)

and unexpected features of the shapes of the graphs.

End of Case Study 21.
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 22: Methamatics (or ‘The
math of meth’).

Case Study 22:

Methamatics (or ‘The math of meth’).

• The previous case study investigated the effects of alcohol, which saturates

enzymes in the liver when consumed in typical doses, and is therefore

metabolised at a constant rate.

• Because the lower doses of most other drugs do not saturate metabolic

enzymes, they are therefore typically metabolised by the body at a rate

proportional to the current concentration of the drug in the bloodstream

(called first-order reactions in Chemistry).

• Hence the typical blood concentration functions of such drugs are expo-

nentials, and it is useful to talk about their half-lives.

• Figure 9.16 shows the approximate half-lives of some substances.

drug t1/2 drug t1/2

caffeine (coffee) 5 h nicotine (cigarettes) 2 h
codeine (analgesic) 3 h progesterone (oral contraceptive) 40 h
adrenaline 2 min 3,4-Methylenedioxymethamphetamine 8 h

(ecstasy)
testosterone 3 h γ-Hydroxybutyric acid (GHB) 40 min
diacetylmorphine (heroin) 8 min morphine 2.5 h
sertraline (Zoloft) 26 h sildenafil (Viagra) 3 h

Figure 9.16: Some common drugs and hormones, and their approximate half-lives.

Question 9.5.3

The synthetic central nervous system stimulant methamphetamine (also

known as ‘ice’, ‘speed’ and ‘meth’) is a relatively common recreational drug

that is is typically smoked, ‘snorted’, injected, swallowed orally or taken as

a rectal suppository. It also has approved medical uses, for example in the

treatment of attention-deficit hyperactivity disorder, ADHD.

Methamphetamine causes the release of chemicals such as dopamine and

(continued over)
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§9.5. PLEASURES OF THE FLESH AND DERIVATIVES Case Study 22: Methamatics (or ‘The
math of meth’).

Question 9.5.3 (continued)

serotonin in the brain, leading to feelings of intense excitement and eupho-

ria, intensified emotions, increased energy levels, reduced appetite, increased

libido and a general feeling of extreme well-being. The ‘high’ can last from

2 to 12 hours.

Methamphetamine is highly addictive, leading to depression, psychosis, ex-

treme risk taking, and damage to almost every major organ system in the

body.

Methamphetamine can be synthesised from pseudoephedrine, which is a

common nasal decongestant in medications for allergies and colds. Australia

now heavily regulates the sale of such preparations to prevent their use in

the production of methamphetamine.

In [7], researchers administered methamphetamine to study participants,

and recorded the subsequent blood concentrations of the drug. A model for

the blood concentration (in ng/mL) of one participant at time t hours after

dosing followed the equation M(t) = 47e−0.06t where t > 3 for the model

to apply; see Figure 9.17.
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Figure 9.17: Modelled blood concentration of methamphetamine.

(continued over)
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Question 9.5.3 (continued)

(a) Find the units of M ′(t).

(b) What do you notice about the functions M and M ′? What is the

significance of your observation? (Hint: M ′(t) = −0.06× 47e−0.06t.)

(c) Estimate the half-life of methamphetamine for this person.

End of Case Study 22.
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Case Study 23:

Wild, wild women

Photo 9.5: A pair of paltry testes, before and after dissection. (Source: PA. (Just the photo!))

Photo 9.6: Various types of contraceptive including: oral contraceptive, condoms, injected contraceptives
and traditional herbal methods. (Source: PA.)

• Each of the many different methods of contraception has advantages and

disadvantages.

• Figure 9.18 compares the effectiveness of various methods of contraception,

based on data given in [11].
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Method Typical use Ideal use 1-year

Chance 85 85
Spermicides 26 6 40
Periodic Abstinence 25 1 – 9 63
Cap

Parous Women 40 26 42
Nulliparous Women 20 9 56

Sponge
Parous Women 40 20 42
Nulliparous Women 20 9 56

Diaphragm 20 6 56
Withdrawal 19 4
Condom 14 3 61
Oral pill 5 0.1 71
IUD 0.1 – 2.0 0.1 – 1.5 80
Depo-Provera IM 150 mg 0.3 0.3 70
Female Sterilisation 0.5 0.5 100
Male Sterilisation 0.15 0.10 100

Figure 9.18: The expected percentage of women who will experience an unintended pregnancy when using
various methods of contraception for a year, through either typical use or ideal (very careful) use. Also
shown is the average percentage of women continuing to use that method of contraception after one year.

Photo 9.7: Fireworks, Hong Kong. (Source: PA.)

• Depo-subQ Provera 104 is a long-term female contraceptive administered

as an injection every 12− 13 weeks.

• The active ingredient in a standard 0.65 mL dose is 104 mg of the artificial

female hormone medroxyprogesterone acetate (MPA), which is similar to

progesterone.
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• The contraceptive works by inducing changes to the female reproductive

system, inhibiting egg release and creating a hostile environment to sperm.

• It is 99.7% effective, which is very high when compared to many other

forms of contraception.

• Commonly quoted benefits are convenience and reliability.

• Studies have identified some side effects, including breakthrough bleeding,

reduced libido, weight gain and potentially, reduced bone density.

Example 9.5.4

Figure 9.19 shows some pharmacokinetic parameters of MPA after a single

subcutaneous injection of Depo-SubQ Provera 104 in healthy women. The

data are based on results in [11], with a sample size of n = 42 women.

Cmax tmax C91 AUC0−91 AUC0−∞ t1/2

(ng/mL) (day) (ng/mL) (ng day/mL) (ng day/mL) (day)

Mean 1.56 8.8 0.402 66.98 92.84 43
Min 0.53 2.0 0.133 20.63 31.36 16
Max 3.08 80.0 0.733 139.79 162.29 114

Figure 9.19: Pharmacokinetic parameters of MPA.

In Figure 9.19:

• Cmax = peak blood concentration;

• tmax = the time at which Cmax occurs;

• C91 = blood concentration at 91 days;

• AUC0−91 = the area under the concentration-time curve over 91 days;

• AUC0−∞ = the area under the concentration-time curve over an indef-

inite time period; and

• t1/2 = half-life of MPA.
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Example 9.5.5

A patient has an injection of Depo-subQ Provera 104. After the dose, the

concentration C(t) of MPA in her blood (in ng/mL at time t in days) is

modelled by C(t) = 1.4t0.15e−0.02t. Figure 9.20 shows the graph of C(t).
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Figure 9.20: A model of the blood concentration of MPA.

Surge functions

In a surge function, the value initially surges rapidly before falling off

exponentially over time. A general equation for a surge function is

f (t) = atpe−bt

where the values of a, p and b depend on the phenomenon. For Depo-subQ

Provera 104, C(t) = 1.4t0.15e−0.02t, so a = 1.4, p = 0.15 and b = 0.02.

Question 9.5.6

Explain mathematically why surge functions f (t) = atpe−bt have the general

shape demonstrated in Example 9.5.5.
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• Now we will demonstrate how to use derivatives and Newton’s method to

determine the timing of a follow-up injection.

Example 9.5.7

The minimum blood concentration level of MPA necessary for reliable con-

traception is 0.3 ng/mL. Calculate the time in days after which contraception

ceases to be reliable. (Your answer should be accurate to 3 decimal places.)

Answer: we haveC(t) = 1.4t0.15e−0.02t. The equation that requires solving

is C(t) = 0.3.

Hence if we let f (t) = C(t) − 0.3 then we can solve f (t) = 0 by using

Newton’s method, as follows:

f (t) = 1.4t0.15e−0.02t − 0.3, so

f ′(t) = 1.4e−0.02t
(
0.15t−0.85 − 0.02t0.15

)
Finally, we use t0 = 50 as the initial estimate for the solution.

After substituting f , f ′ and t0 into Newton’s method and iterating, on the

fifth step the estimate of the solution is

t5 ≈ 112.440.

Further iterations do not change the value significantly, so the blood con-

centration of MPA decreased to 0.3 ng/mL at around 112 days, which is

about 16 weeks.

For reference, the time recommended by the manufacturer for follow-up

injections is 12−13 weeks, which provides a reasonable safety margin.

Now we can develop a computer model.

Program specifications: Write a program that uses Newton’s method to

find the time (in days) at which the MPA concentration decreases to 0.3 ng/mL.

226



§9.5. PLEASURES OF THE FLESH AND DERIVATIVES

Program 9.1: Newton’s method

� �� �
1 # Program to use Newton ’ s method to s o l v e an equat ion .
2 from f u t u r e import d i v i s i o n
3 from pylab import ∗
4

5 # Def ine the func t i on f o r Newton ’ s method . Here i t i s
6 # the blood concent ra t i on o f MPA.
7 de f func ( t ) :
8 r e turn 1 .4 ∗ t ∗∗0.15 ∗ exp (−0.02∗ t ) − 0 .3
9

10 # Def ine the d e r i v a t i v e o f the func t i on f o r Newton ’ s method .
11 de f funcDash ( t ) :
12 r e turn 1 .4 ∗ exp (−0.02∗ t ) ∗ (0 . 15∗ t ∗∗−0.85 − 0 .02∗ t ∗∗0 .15)
13

14 # I n i t i a l i s e v a r i a b l e s
15 c t r = 0
16 newEst = 50
17 prevEst = 0
18 t o l e r a n c e = 0.001
19 # Loop through s t ep s o f Newton ’ s method .
20 whi le abs ( newEst − prevEst ) > t o l e r a n c e :
21 c t r = c t r + 1
22 prevEst = newEst
23 newEst = prevEst − func ( prevEst ) / funcDash ( prevEst )
24 pr in t ctr , round ( newEst , 3 )
 	� �

Here is the output from running the above program:� �� �
1 1 89 .769
2 2 108.467
3 3 112.302
4 4 112 .44
5 5 112 .44
 	� �End of Case Study 23.

227



§9.6. FORENSIC TOXICOLOGY

9.6 Forensic toxicology

• Forensic science is concerned with applying scientific techniques to gather

evidence relevant to legal cases.

• Forensic toxicology is the branch of forensic science that investigates drugs,

poisons and other substances in the body.

• Many legal actions rely on evidence from forensic science/toxicology.

• One of the most common drugs of interest is alcohol, particularly in con-

nection with accidents and violent crimes.

• Forensic toxicology units often analyse blood, tissue or urine samples, from

crime victims and suspected perpetrators. They are also asked to extrap-

olate measured readings to earlier times.

Question 9.6.1

In practice (particularly in legal cases), models of BAC use the Widmark

formula, developed in 1932. The equation is:

B =
A

rM
× 100%− V t

where B is the BAC at any time t since commencing drinking, A is the

amount of alcohol consumed in g, V is the rate at which the body eliminates

alcohol measured in % per time period, M is the body mass in g and r is

the Widmark factor which estimates the proportion of body mass that is

water. The precise value of r depends on factors such as gender, age and

percentage body fat. Reasonable estimates are r ≈ 0.7 for men and r ≈ 0.6

for women.

(a) What is the physical meaning of the term rM?

(continued over)
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Question 9.6.1 (continued)

(b) Why is the value of r for women typically less than for men?

(c) Verify that the units in the Widmark formula are consistent.

(d) Justify the Australian government guideline that suggests: to remain

below the legal driving BAC limit, within the first hour “men should

drink at most two drinks and women at most one”.

(e) Find B′ and comment on your answer.
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Question 9.6.2

In the Widmark formula, the absorption term assumes that the body absorbs

alcohol immediately after consumption. The following variation, from

[33], takes into account absorption time.

B =
A

rM
×
(
1− e−kt

)
× 100%− V t

where k is the rate at which the body absorbs alcohol.

(a) The “standard” Widmark formula is: B =
A

rM
× 100%− V t. Explain

the difference between the two versions.

(b) If t is measured in hours, what are the units of k?

(c) What factors could influence the value of k for:

(i) a given person, at different times?

(ii) different people?

(continued over)
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Question 9.6.2 (continued)

(d) Find an expression for the time tmax in hours at which the value of B

reaches its maximum. (Hint: B′(t) =
100Ak

rM
e−kt − V .)

(e) When consuming alcohol with food in the stomach, a typical value for

k is 2.3. When consuming alcohol on an empty stomach, k ≈ 6. Find

tmax for an 80 kg male consuming 4 standard drinks, both on an empty

stomach and after eating.

Now we can develop a computer model of food consumption and BACs.

Program specifications: Write a program that plots BAC graphs for 6

hours after alcohol consumption on both a full and empty stomach, for men or

women of varying masses and with various levels of alcohol consumption.
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Program 9.2: BACs and food consumption� �� �
1 # Program to compare BACs f o r men and women o f vary ing masses
2 # and l e v e l s o f a l c o h o l consumption , on f u l l and empty stomachs
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5

6 a l c o h o l = input ( ”How much pure a l c o h o l i s consumed ( in g ) ? ” )
7 mass = input ( ”What i s the person ’ s mass ( in kg ) ? ” )
8 gender = input ( ”Type 1 i f male , anything e l s e f o r female : ” )
9 i f gender == 1 :

10 r = 0 .7
11 e l s e :
12 r = 0 .6
13 t imes = arange ( 0 , 6 . 1 , 0 . 1 )
14 BAC1 = arange ( 0 , 6 . 1 , 0 . 1 )
15 BAC2 = arange ( 0 , 6 . 1 , 0 . 1 )
16 ka1 = 6
17 ka2 = 2 .3
18 mult = a l c o h o l / ( r ∗ mass ∗ 1000) ∗ 100
19

20 # Apply the equat ion f o r the r equ i r ed number o f s t ep s .
21 i = 0
22 whi le i < s i z e ( t imes ) :
23 t = times [ i ]
24 BAC1[ i ] = mult ∗ (1 − exp(−t ∗ ka1 ) ) − 0 .015 ∗ t
25 BAC2[ i ] = mult ∗ (1 − exp(−t ∗ ka2 ) ) − 0 .015 ∗ t
26 i f BAC1[ i ]<0:
27 BAC1[ i ] = 0
28 i f BAC2[ i ]<0:
29 BAC2[ i ] = 0
30 i = i + 1
31 p lo t ( times ,BAC1, ’b− ’ , l i n ew id th =3)
32 p lo t ( times ,BAC2, ’k− ’ , l i n ew id th =3)
33 g r id ( True )
34 x l a b e l ( ”Time ( hours ) ” )
35 y l a b e l ( ”BAC (%)” )
36 t i t l e ( ”BAC curve f o r a f u l l stomach ver sus an empty stomach” )
37 t ex t ( 0 . 7 , 0 . 0 4 1 , ” Fu l l stomach” )
38 t ex t ( 1 . 1 , 0 . 0 6 , ”Empty stomach” )
39 show ( )
 	� �
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Figure 9.21 shows the output from running the above program for an 80 kg

male consuming four standard drinks:
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Figure 9.21: Predicted BACs when consuming alcohol on a full stomach compared to an empty stomach.

Question 9.6.3

Briefly discuss the implications of the graph in Figure 9.21.
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Case Study 24:

CSI UQ

Image 9.3: Nicole Richie mug-shot, (Source: en.wikipedia.org).

Question 9.6.4

Previously we saw that reasonable estimates for the value of r (the Widmark

factor) are r ≈ 0.7 for men and r ≈ 0.6 for women. Some researchers

propose alternate formulae for more accurate estimations of r for different

individuals. For a female with height H in m and mass M in kg, [39]

estimates r as

r = 0.31223− 0.006446M + 0.4466H.

(For interest, the formula for males is r = 0.3161− 0.004821M + 0.4632H .)

Why is it reasonable that the coefficient of M is negative and the coefficient

of H is positive?
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Question 9.6.5

In 2006, police charged actress Nicole Richie with DUI (driving under the

influence) after she drove the wrong way down a highway in Los Angeles.

The charge sheet recorded her height as 1.55 m and mass (weight) as 38.5

kg.

(a) Would you expect her value of r to be more or less than 0.6 (which is

the ‘standard’ value for women)? Why?

(b) Calculate her value of r using r = 0.31223−0.006446M +0.4466H and

comment on your answer.

(c) If she rapidly consumed 2.5 standard drinks on an empty stomach,

would she remain under the legal Californian BAC driving limit of

0.08%? (Use r = 0.6 and also the value of r calculated in Part (b).)
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End of Case Study 24.
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9.7 Space for additional notes
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Chapter 10: A good area for drugs

Lily the Pink she turned to drink

she filled up with paraffin inside

and despite her medicinal compound

sadly pickled-Lily died.

Up to heaven her soul ascended

all the church bells they did ring

she took with her medicinal compound

hark the herald angels sing.

We’ll drink a drink a drink

to Lily the Pink the Pink the Pink

the saviour of the human race

for she invented medicinal compound

most efficacious in every case.

Artist: The Scaffold (www.youtube.com/watch?v=8QHOdA4OOwM)

Image 10.1: The Drunks (1629), Diego Velazquez (1599 – 1660), Museo del Prado, Madrid. (Source:
en.wikipedia.org)
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10.1 Integration and the indefinite integral

• All semester we have stressed the importance of change. The rate at which

a function is changing can be calculated by differentiating the function.

• Often, the ability to answer the reverse question is useful: given the rate

at which something is changing, can we find a function for it?

• To answer the reverse question we use a process called integration.

Integration

A function F is an indefinite integral or antiderivative of another function

f if the derivative of F is f ; that is, F ′(x) = f (x). The process of finding

an integral is called integration.

• In SCIE1000, you will not (generally) need to find integrals, but it is es-

sential to understand why integrals are important and how they are used.

The integral sign

Let f (x) be a function with integral F (x). The indefinite integral of f is:∫
f (x) dx = F (x) + C

where C is the arbitrary constant of integration.

The symbol

∫
is the integral sign, and dx means that integration is with

respect to the variable x.

Example 10.1.1

The integral of f (x) = 3x2 is F (x) = x3 + C, where C is an arbitrary

constant. (You can check the answer by differentiating F .)
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• Sometimes, extra information, called a boundary condition, allows the

value of the constant C to be found.

Question 10.1.2

Earlier, we saw that the rate of alcohol metabolism is about 0.015% per

hour. Let B(t) be the BAC (in %) of a person at any time t (in hours).

(a) Write an expression for B′(t).

(b) Find an expression for B(t).

(c) Researchers administer a controlled dose of alcohol to an individual. At

time t = 1, absorption is essentially complete and the recorded BAC

attains its maximum value of 0.077%. Find an expression for B(t) after

t = 1.

(d) Estimate the time at which the BAC will first be legal:

(i) for driving on an open licence.

(ii) for driving on a provisional licence.

(e) Comment on the likely accuracy of your answers to Part (d).

(continued over)
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Question 10.1.2 (continued)

(f) Figure 10.1 shows measured BACs after researchers administered four

different controlled doses of alcohol to study participants (see [46]). Re-

late your answers for Parts (a) to (e) to Figure 10.1.

0 1 2 3 4 5 6 7
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
o
n
ce

n
tr

a
ti

o
n
 (

%
)
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Figure 10.1: Measured BACs after administration of four different controlled doses of alcohol.
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10.2 Areas and definite integrals

• Given an equation modelling some phenomenon, the area between the curve

and the x-axis often has an important and useful physical meaning.

Question 10.2.1

A person with a BAC of 0.077% at time t = 1 hr metabolises alcohol at a

constant rate of V = 0.015% hr−1.

(a) Assuming that all alcohol has been absorbed by time t = 1, calculate

the total change in BAC between times t = 1 hr and t = 6 hr; include

units.

(b) Draw a rough sketch of the graph of −V between those times.

(c) Calculate the area between the graph of V and the x-axis between those

times; include units.

(d) Compare your answers from Parts (a) and (c).

• Given a graph, the area under the curve or AUC of that graph is the area

bounded by that curve, the x-axis and two time points on the x-axis.

• AUCs are positive (above the x-axis) or negative (below the x-axis).
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• Often, the AUC of a graph has very useful practical applications. The

precise meaning of the area depends on what the graph represents.

• For example, given the graph of a rate of change of some phenomenon, the

AUC between two time points is equal to the total change in the value of

the phenomenon between those points.

Question 10.2.2

Figure 10.2 shows a graph with a line fitted to some measured blood alcohol

concentrations (see [46]).
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Blood alcohol concentration after consuming a controlled dose of alcohol

Figure 10.2: A graph of measured BACs.

(a) What are the units of the AUC in the graph?

(b) What does the AUC represent?

(continued over)
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Question 10.2.2 (continued)

(c) Why is the AUC significant?

(d) Calculate the AUC between t = 1 hr and t = 6 hr.

• Areas under curves are so useful that they have a special name and notation.

Definite integrals

Given a function f (x), the AUC from the point x = a to the point x = b is

called the definite integral of f (x) from a to b, written as∫ b

a

f (x) dx.

Example 10.2.3

In Question 10.2.1 we calculated

∫ 6

1

−0.015 dt.

• Recall from school that if a function f (x) is known, then there is an easy

way to find areas mathematically (we will cover this later).

• In practice, usually f (x) is unknown; instead, the only known information

is measured data values.

• Hence, the area is estimated approximately, by summing the areas of geo-

metric shapes of “narrow” width, such as rectangles (called Riemann sums),

or trapezoids (called the trapezoid rule).
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• Note that summing areas of shapes is used to estimate AUCs predomi-

nantly when a function is not known but some data values have been

measured.

• At school, you probably encountered problems such as “Let f (x) = x2.

Use rectangles to estimate the AUC of this function.”

• Such problems are artificial: in reality, if we know the function, then the

alternate mathematical approach is usually easier and more accurate.

Question 10.2.4

Figure 10.3 shows a rectangle, a trapezoid and a composite shape.
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Figure 10.3: A rectangle (left), trapezoid (centre) and composite shape (right).

(a) Derive expressions for the areas of the rectangle and the trapezoid.

(b) Show how to find the area of the composite shape.
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Question 10.2.5

Let N(t) be an unknown function representing the blood nicotine concen-

tration of a person after smoking a cigarette. Figure 10.4 shows some con-

centrations, measured experimentally (see [3]).
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Figure 10.4: Measured blood nicotine concentrations after smoking.

Use Riemann sums to estimate the AUC of the unknown function N(t);

that is, estimate

∫ 95

0

N(t) dt.
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Question 10.2.6

Repeat Question 10.2.5 but instead use the trapezoid rule.
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Figure 10.5: Measured blood nicotine concentrations after smoking.

Now we can develop a computer model.

Program specifications: Write a Python program that estimates the AUC

for N(t) using Riemann sums or the trapezoid rule. The program must output

the total AUC and draw a graph showing the shapes used in the sums.
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Program 10.1: Nicotine� �� �
1 # Program to use Riemann sums or the t rapezo id r u l e to
2 # est imate the area under a n i c o t i n e concent ra t i on curve .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5

6 # I n i t i a l i s e v a r i a b l e s
7 type = input ( ”Type : 1 f o r Riemann sum , 2 f o r t r apezo id : ” )
8 t = array ( [ 0 , 3 , 6 , 10 , 14 , 20 , 35 , 65 , 9 5 ] )
9 concs = array ( [ 5 , 11 , 15 . 4 , 13 . 4 , 12 . 8 , 11 . 3 , 9 . 8 , 8 , 7 ] )

10 area = 0
11

12 # Sum the areas in each shape
13 i = 1
14 whi le i < s i z e ( t ) :
15 width = t [ i ] − t [ i −1]
16 i f type == 1 :
17 he ight = concs [ i −1]
18 shapeX = array ( [ t [ i −1] , t [ i −1] , t [ i ] , t [ i ] ] )
19 shapeY = array ( [ 0 , he ight , he ight , 0 ] )
20 e l s e :
21 he ight = ( concs [ i −1] + concs [ i ] ) /2
22 shapeX = array ( [ t [ i −1] , t [ i −1] , t [ i ] , t [ i ] ] )
23 shapeY = array ( [ 0 , concs [ i −1] , concs [ i ] , 0 ] )
24 area = area + he ight ∗ width
25 # Plot each shape
26 p lo t ( shapeX , shapeY , ’k− ’ , l i n ew id th =2)
27 i = i + 1
28

29 # Give the output .
30 pr in t ”The est imated AUC i s ” , area , ”ng min / mL”
31

32 p lo t ( t , concs , ’ bo ’ , markers i ze =8)
33 x l a b e l ( ”Time ( mins ) ” )
34 y l a b e l ( ” Nico t ine concent ra t i on ( ng/mL) ” )
35 i f type == 1 :
36 t i t l e ( ”Blood concent ra t i on o f n i c o t i n e ( r e c t a n g l e s ) ” )
37 e l s e :
38 t i t l e ( ”Blood concent ra t i on o f n i c o t i n e ( t r a p e z o i d s ) ” )
39 show ( )
 	� �
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Here is the output from running the above program twice:� �� �
1 Type : 1 f o r Riemann sum , 2 f o r t r apezo id : 1
2 The est imated AUC i s 943 .5 ng min / mL
3

4 Type : 1 f o r Riemann sum , 2 f o r t r apezo id : 2
5 The est imated AUC i s 896 .15 ng min / mL
 	� �
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Figure 10.6: Program output using the Riemann sum (top) and trapezoid rule (bottom).
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10.3 To the Fundament

• In the last few sections we have covered:

(1) indefinite integrals,

∫
f (x) dx, which are solved using antiderivatives;

and

(2) definite integrals,

∫ b

a

f (x) dx, which are calculated by measuring AUCs.

• These two concepts are useful precisely because they represent a range of

important physical phenomena. For example:

– velocity is the antiderivative of acceleration, and displacement is the

antiderivative of velocity; and

– the area under the concentration curve measures the overall exposure

of the body to a drug.

• Our discussions so far do not suggest any apparent links between indefi-

nite integrals and definite integrals. However, a very important theorem

demonstrates a very close link.

The Fundamental Theorem of Calculus

The definite integral of the rate of change of a function F between

two points equals the net change in the value of F between the two

points. That is: ∫ b

a

F ′(x) dx = F (b)− F (a)
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Significance of the Fundamental Theorem

The Fundamental Theorem is important and useful for the following reason.

Consider some phenomenon, and let f be a function that models that phe-

nomenon. Then we can often calculate the area under the curve between

two points without needing to sum the areas of rectangles. Instead, find an

antiderivative of f , substitute the values of the points into the antiderivative,

and then subtract.

Example 10.3.1

Some examples include:

(1) Let V (t) be the volume of water in a reservoir at time t, so V ′(t) is the

rate of inflow/outflow at any time. Then∫ t2

t1

V ′(t) dt = V (t2)− V (t1)

is the net change in total volume from time t1 to time t2.

(2) If the population size of a bacterial colony changes at a rate of P ′(t)

(allowing for births, deaths and migration), then∫ t2

t1

P ′(t) dt = P (t2)− P (t1)

is the net change in population from time t1 to time t2.

(3) Let [C](t) be the unknown concentration of the product C of a chemical

reaction at time t, so [C]′(t) is the rate of reaction. Then∫ t2

t1

[C]′(t) dt = [C](t2)− [C](t1)

is the net change in concentration from time t1 to time t2.
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Question 10.3.2

In Question 10.2.2 Part (d) we used the area of a triangle to calculate the

AUC between t = 1 hr and t = 6 hr for the line shown in Figure 10.7.
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Blood alcohol concentration after consuming a controlled dose of alcohol

Figure 10.7: Blood alcohol concentrations.

(a) Rewrite Question 10.2.2 Part (d) as a definite integral.

(b) Evaluate the expression in Part (a).

(c) Compare your answer to Part (b) with your answer to Question 10.2.2

Part (d).
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Case Study 25:

Dying for a drink

Photo 10.1: Left: mellow and yellow. Right: better red than dead. (Source: DM.)

• In addition to the immediate risks associated with alcohol consumption

(such as accidents), the risk of many negative long-term health effects is

increased by both the frequency and volume of consumption.

Question 10.3.3

In Question 9.6.1, we estimated BACs using the Widmark formula. For a 70

kg man drinking n standard drinks (each containing 10 grams of alcohol),

his estimated BAC % at time t in hours since commencing drinking is

B =
10n

490
− 0.015t.

(a) At what time will his BAC return to 0?

(continued over)
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Question 10.3.3 (continued)

(b) Define the total exposure to alcohol E as the AUC of B from t = 0

until the BAC reaches 0 again. Find an expression for E.

(c) Assume that long-term damage to internal organs from consumption

of alcohol is proportional to the total exposure to alcohol E (which is

simplistic, but not unreasonable). Discuss the impact on E of “one

extra drink for the road”.

(continued over)
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Question 10.3.3 (continued)

(d) A man with mass 70 kg consumes two standard drinks every day. A

second man with the same mass consumes 14 standard drinks once a

week, but does not drink at any other time. Estimate the weekly value

of E for each.

(continued over)
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Question 10.3.3 (continued)

(e) Comment on your results to Part (d). What are some ramifications of

these results (for example, for binge drinking)?

(f) Earlier we stated that it was “simplistic but not unreasonable” to as-

sume that long-term organ damage from alcohol is proportional to E.

What are some of the simplifying assumptions in the statement?

Now we can develop a computer model.

Program specifications: Write a Python program that uses the Widmark

formula to graph the total exposure to alcohol for a 70 kg man consuming

0 to 15 standard drinks, and also prints out the relative exposure to alcohol

compared with consuming 2 drinks.
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Program 10.2: Wilful exposure (to alcohol)� �� �
1 # Find the ” exposure to a l c o h o l ” f o r a person o f chosen gender
2 # and mass , consuming 0 to 15 dr inks , and a l s o p r i n t
3 # the r e l a t i v e t o t a l exposure compared to consuming 2 dr inks .
4 from f u t u r e import d i v i s i o n
5 from pylab import ∗
6

7 # I n i t i a l i s e v a r i a b l e s
8 mass = input ( ” Enter the person ’ s mass in kg : ” )
9 gender = input ( ” S e l e c t 1 f o r male , anything e l s e f o r female : ” )

10 mass = mass ∗ 1000
11 dr inks = arange (0 ,16 )
12 areas = 1 .0 ∗ arange (0 ,16 )
13 i f gender == 1 :
14 water = mass ∗ 0 .7
15 e l s e :
16 water = mass ∗ 0 .6
17

18 # Estimate E f o r each number o f dr inks and draw the graph .
19 nd = 0
20 whi le nd < 16 :
21 tBAC0 = 1000 ∗ nd / (0 . 015 ∗ water )
22 areas [ nd ] = 1000 ∗ nd ∗ tBAC0 / water − 0 .0075 ∗ tBAC0∗∗2
23 nd = nd + 1
24 p lo t ( dr inks , areas , ’ bo ’ , markers i ze =8)
25 g r id ( True )
26 x l a b e l ( ”Number o f dr inks ” )
27 y l a b e l ( ” Total exposure (% hours ) ” )
28 t i t l e ( ” Total exposure to a l c o h o l ” )
29

30 # Output the r e l a t i v e exposure compared with 2 dr inks
31 pr in t ”Num Exposure r e l a t i v e to 2 dr inks ”
32 nd = 0
33 whi le nd < 16 :
34 r a t i o = areas [ nd ] / areas [ 2 ]
35 pr in t nd , ” ” , round ( ra t i o , 1 )
36 nd = nd + 1
37 show ( )
 	� �

Figure 10.8 shows the output from running the above program.
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Total exposure to alcohol

� �� �
1 Enter the person ’ s mass in kg : 70
2 S e l e c t 1 f o r male , anything e l s e f o r female : 1
3 Num Exposure r e l a t i v e to 2 dr inks
4 0 0 .0
5 1 0 .3
6 2 1 .0
7 3 2 .3
8 4 4 .0
9 5 6 .3

10 6 9 .0
11 7 12 .3
12 8 16 .0
13 9 20 .3
14 10 25 .0
15 11 30 .3
16 12 36 .0
17 13 42 .3
18 14 49 .0
19 15 56 .3
 	� �Figure 10.8: Exposure to alcohol.

End of Case Study 25.
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10.4 You, me and AUC

Case Study 26:

Sweet P’s

Photo 10.2: Left: sweet pea. Right: sweet pee. (Source: PA. (Not just the photo!))

• Diabetes mellitus is a group of chronic diseases in which sufferers have

high levels of blood glucose.

• There are three main types of diabetes: type 1 (insulin-dependent dia-

betes), type 2 (non-insulin-dependent diabetes) and gestational diabetes.

• Typical signs of diabetes include:

– polyuria (excessive urination, often with a sweet taste)

– polydipsia (excessive thirst)

– polyphagia (excessive hunger).

• Once type 1 or type 2 diabetes becomes established in an individual, it is

typically permanent.

259



§10.4. YOU, ME AND AUC Case Study 26: Sweet P’s

• Diabetes is increasingly common in societies with a “western lifestyle”: it

affects around one million Australians, only about half of whom are aware

they have the disease.

• Data from the Framingham heart study (which we saw early in semester)

show that diabetes significantly reduces life expectancy (by around 7.5

years for men aged over 50, and by 8.2 years for women).

• Untreated diabetes can cause blindness, kidney failure and cardiovascular

disease including blockages in small arteries. Some patients require ampu-

tations after blocked peripheral circulation causes the death of soft tissue.

• An Oral Glucose Tolerance Test (OGTT) is a common test for diabetes.

• Prior to taking the test, the patient fasts for around 12 hours. During

the test, the patient is administered a measured oral dose of glucose, with

blood samples taken immediately prior to ingestion of the glucose and at

various intervals for 2 hours afterwards.

• The graph in Figure 10.9 compares the measured blood glucose levels for

a non-diabetic person with those from a hypothetical diabetic person.
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Figure 10.9: Normal blood glucose levels (solid line) and levels indicative of diabetes (dashed line).
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• Figure 10.10 shows the World Health Organisation guidelines for blood

glucose levels indicating various stages of health or disease.

Normal IFG IGT DM

Levels t = 0 t = 2 t = 0 t = 2 t = 0 t = 2 t = 0 t = 2

mmol/L < 6.1 < 7.8 ≥ 6.1, < 7.0 < 7.8 < 7.0 ≥ 7.8 ≥ 7.0 ≥ 11.1

Figure 10.10: World Health Organisation guidelines for blood glucose levels as indicators of: Impaired
Fasting Glycaemia (IFG); Impaired Glucose Tolerance (IGT or pre-diabetes); and Diabetes Mellitus (DM).

Photo 10.3: Left: bloody finger. Right: measured blood glucose concentration. (Source: PA.)

Question 10.4.1

The graph in Figure 10.11 shows 22 blood glucose level measurements, taken

from Peter at ten minute intervals between 6 am and 9:30 am. He had not

eaten for 10 hours prior to testing, and at 7:10 am he commenced eating

breakfast.
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Figure 10.11: A graph of Peter’s measured blood glucose levels. Time is given in minutes after 6 am.

(continued over)
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Question 10.4.1 (continued)

(a) Comment on the graph and the measured values.

(b) Estimate the total mass of glucose (molar mass 180.16 g/mol) in Peter’s

blood at the time of peak concentration.

• A blood glucose measurement shows the concentration of glucose in the

blood at a specific instant in time.

• It is possible that the level might be within the normal range at that instant,

but outside the normal range over a longer time period.

• AUCs allow analysis of the values over a longer time period.

• For example, the paper [20] studies a group of patients with type 1 diabetes

who have normal fasting glucose levels but very high levels after an OGTT.

Question 10.4.2

Figure 10.12 shows measured blood glucose levels for a diabetic group and

a control group, adapted from [20].

(continued over)
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Question 10.4.2 (continued)

time (mins) 0 30 60 90 120

diabetic group (mmol/L) 5.3 10 13 14.4 14.2

control group (mmol/L) 5.1 8.2 8.2 7.1 6.5
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Figure 10.12: Mean blood glucose levels for a diabetic group and a control group.

The paper [20] found that the AUC for the diabetic group is around 779

mmol/L/min, and for the control group is around 265 mmol/L/min. Com-

ment on the units and justify these results.

End of Case Study 26.
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Case Study 27:

Hi GI!

• The Glycaemic Index or GI of foods is often mentioned in marketing

campaigns and in association with dietary health claims.

• The definition of GI is the ratio of the AUCs for two blood glucose

curves, one for the food of interest and the other for pure glucose.

• GIs range between 0 and 100, and indicate the relative extent by which

blood glucose levels rise after the consumption of a food.

• Hence, GI scores are only valid for foods containing carbohydrates.

• Researchers classify foods into the following GI categories.

– Low GI – when the GI is 55 or lower, the digestion of carbohydrates

is slow, producing a slow rise and lower peak in blood sugar level.

Examples of Low GI foods include cherries, skim milk, apples, chick

peas, oranges and carrots.

– Medium GI – when the GI is between 56 and 69, the digestion of

carbohydrates occurs at a moderate rate. Examples of Medium GI

foods include include boiled potato, honey, ice cream and sultanas.

– High GI – when the GI is 70 or higher, the digestion of carbohydrates is

fast, leading to a rapid rise and high peak in blood sugar level. Exam-

ples of High GI foods include mashed potato, white bread, cornflakes,

watermelon and steamed white rice.

• The many claimed health benefits of Low GI diets include weight loss and

improved weight control, improved management of diabetes, reduced risk

of cardiovascular disease and increased physical stamina.

• Researchers calculate the GI of a food in the following way:

– Ten healthy people fast overnight. In the morning, each person con-

sumes a controlled dose of the test food, with known total carbohydrate

content (typically 50 g).
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– Over a 2 hour period, researchers measure the increase in the blood

glucose level above baseline for each participant, produce a graph, and

then calculate the AUC of the test food for each individual using the

trapezoid rule.

– On a separate day, participants undergo the same procedure, but con-

sume a glucose solution which contains the same amount of total car-

bohydrate. Researchers calculate the AUC for glucose (the reference

food) for each individual.

– The formula for calculating the GI is: the AUC for the test food di-

vided by the AUC for glucose, multiplied by 100%. An average of the

individual GI scores represents the overall GI for the test food.

• Criticisms of focusing on GIs as a dietary tool include:

– GIs can vary greatly for a given food, depending on how ripe it is, and

how it is processed, stored and cooked;

– the GI of a food may be less important than the actual quantity con-

sumed; and

– measured GIs may not be very exact or reliable. For example, if the

GI of a given food is measured at different times of the day then the

results can differ quite substantially.

Question 10.4.3

Consider a certain test food for which the GI is to be calculated. Let F (t)

and G(t) be the increase (above baseline) in blood glucose levels in mmol/L

measured while calculating the GI, with F (t) corresponding to the test food

and G(t) corresponding to glucose.

(a) Write a mathematical expression for the GI of the test food.

(continued over)
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Question 10.4.3 (continued)

(b) Draw a diagram illustrating your answer to Part (a).

Photo 10.4: Nut sandwich. (Source: PA.)

Question 10.4.4

The paper [23] compared the GI of meals containing bread and almond nuts

to the GI of meals containing bread only. Figure 10.13 shows the study

data.

The GI of the the ‘bread only’ meal is about 70. Estimate the GI of the

‘bread and almonds’ meal.

(continued over)
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Question 10.4.4 (continued)

time (mins) 0 15 30 45 60 90 120

‘bread only’ group (mmol/L) 4.7 5 6.5 7 6.8 5.5 4.8

‘bread and almonds’ group (mmol/L) 4.7 4.7 5.5 5.8 5.3 4.8 5.1
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Figure 10.13: Mean blood glucose levels.

End of Case Study 27.
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Case Study 28:

Bioavailability of drugs

• Drugs are administered via many routes, including:

– orally, such as the contraceptive pill;

– as a gas, such as nicotine from a cigarette;

– through the skin, such as a nicotine patch;

– intravenously, such as chemotherapy drugs for treating cancer;

– sublingually, such as nitroglycerin used to treat angina;

– through the rectum, such as a paracetamol suppository.

• Different routes of drug delivery are required depending on the drug type

and the condition of the patient. Oral administration is often most conve-

nient, but other routes may be more convenient for drugs that cause nausea

or vomiting, or for patients undergoing cancer treatment, who often develop

severe, painful mouth ulcers.

• After administration of a drug, it typically needs to pass through a number

of stages before it enters general circulation and has a chance to act.

• For example, the amount of an oral drug which enters circulation is influ-

enced by the following factors, collectively called first pass effects:

– how readily the drug is liberated from the tablet;

– how readily and rapidly the drug dissolves in the digestive tract;

– whether the drug is damaged by acidic stomach contents;

– whether the drug is partially metabolised by bacteria in the gut;

– how much of the drug is absorbed across the intestinal wall;

– the digestive health of the individual (for example, vomiting or diar-

rhoea causes mechanical expulsion of the drug);

– whether the drug is partially metabolised while being transported in

the blood; and

– how much drug is metabolised in the liver prior to entering general

circulation (because blood travels from the small intestine to the liver).
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• After administering a drug by a given route, its bioavailability F is the

fraction of the dose which enters general circulation compared to a dose of

the same size administered intravenously.

Definition of bioavailability

Let R(t) be the measured blood concentration after administration by some

route a dose of size DR, and let I(t) be the measured concentration after

intravenous administration of a dose of size DI . Then the bioavailability of

the drug administered via this route is:

F =

∫ ∞
0

R(t) dt∫ ∞
0

I(t) dt

× DI

DR
.

Question 10.4.5

(a) Explain the meaning of each term in the expression for F .

(b) Relate the concepts of bioavailability and GI.
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Question 10.4.6

In [34], patients were administered 1000 mg of the analgesic paracetamol

intravenously, and then had their subsequent blood paracetamol levels mea-

sured. In the paper, researchers modelled the measured blood concentration

in µg/mL at time t in hours after dosing with I(t) = 13.8e−2.55t+ 13e−0.28t.
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Figure 10.14: The graph of I(t), modelling blood concentrations after patients were administered
intravenous doses of 1000 mg of paracetamol.

(a) Calculate the AUC from t = 0 to t = ∞ for I(t), with units. (Hint:∫
aekt dt = a

ke
kt + C.)

(continued over)
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Question 10.4.6 (continued)

(b) Researchers also administered paracetamol orally. Find the AUCs if the

bioavailability of a 500 mg oral dose is 0.63, and 1000 mg is 0.9.

(c) In [28], researchers administered 1000 mg rectal doses of paracetamol

in aqueous solution. They monitored blood concentrations for 6 hours,

and then calculated the AUC from time t = 0 h to t = 6 h, denoted

AUC0−6, using the trapezoid rule. The researchers then estimated the

AUC until t =∞ using the following equation (quoted from [28]):

AUC0−∞ = AUC0−6 + Ct=6 × t1/2 ×
1

0.69

where Ct=6 is the measured concentration 6 hours after the dose was

administered and t1/2 is the half life of paracetamol. Illustrate the

equation with a diagram and justify it mathematically.

(continued over)
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Question 10.4.6 (continued)

(d) The paper [28] found that the AUC for the 1000 mg oral paracetamol

dose is around 2540 µg/mL/min and the 1000 mg rectal mg dose is

around 2290 µg/mL/min. Deduce the relative bioavailability of a 1000

mg rectal dose compared with a 1000 mg oral dose. (Also, comment

on the units for the AUCs given in [28] and reproduced above.)

(continued over)
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Question 10.4.6 (continued)

(e) The model for blood concentration after administration of 1000 mg

rectal doses of paracetamol, using the data given in [28], is

R(t) = 14t0.5e−0.5t

where the units for R(t) are µg/mL and t is the number of hours since

administration. Figure 10.15 shows the graph of R(t).
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Figure 10.15: Modelled modelled blood paracetamol concentrations for patients after administration
of 1000 mg rectal doses.

On the above graph, draw a curve which is likely to model (roughly) the

concentration after a 1000 mg oral dose. Also indicate how the equation

modelling the curve would differ from R(t). (Hint: absorption after an

oral dose is more rapid than for a rectal dose.)

End of Case Study 28.
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10.5 Space for additional notes
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Part 5: Life and Death

Image 10.2: The three ages of Man
and Death (c1510), Hans Baldung (c.
1484 – 1545), Museo del Prado, Madrid.
(Source: commons.wikimedia.org).

‘‘O sweeter than the marriage-feast,
’Tis sweeter far to me,
To walk together to the kirk
With a goodly company!

To walk together to the kirk,
And all together pray,
While each to his great Father bends,
Old men, and babes, and loving friends,
And youths and maidens gay!

Farewell, farewell! but this I tell
To thee, thou Wedding-Guest!
He prayeth well, who loveth well
Both man and bird and beast.

He prayeth best, who loveth best
All things both great and small;
For the dear God who loveth us,
He made and loveth all.’’

The Mariner, whose eye is bright,
Whose beard with age is hoar,
Is gone; and now the Wedding-Guest
Turned from the bridegroom’s door.

He went like one that hath been stunned,
And is of sense forlorn:
A sadder and a wiser man
He rose the morrow morn.

The Rime of the Ancient Mariner (1797 – 98),

Samuel Taylor Coleridge, (1772 – 1834).
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Chapter 11: Populations

All things bright and beautiful,

All creatures great and small,

All things wise and wonderful,

The Lord God made them all.

Each little flower that opens,

Each little bird that sings,

He made their glowing colours,

He made their tiny wings.

Artist: Cecil Alexander (www.youtube.com/watch?v=KLfkL8uDuc8)

Image 11.1: The Entry of the Animals into Noah’s Ark (1613), Jan Brueghel the Elder (1568 – 1625), The
J. Paul Getty Museum, Los Angeles. (Source: en.wikimedia.org.)
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§11.1. INTRODUCTION TO DIFFERENTIAL EQUATIONS

11.1 Introduction to differential equations

• If we can write an equation representing the rate at which a phenomenon

is changing, mathematical techniques can be used to predict future values.

Example 11.1.1

The acceleration due to gravity on Earth is g = −9.8 m/s2. Let v(t) be

the unknown velocity of a ball dropped at time t = 0 s. Acceleration is the

rate of change of velocity, so v′(t) = −9.8. We can then use integration to

solve for v, giving v(t) = −9.8t m/s at any time t in seconds.

• In Example 11.1.1, we started with an equation for the rate at which the

function v is changing, and used integration to find the value of the function.

• Integration was easy, because the rate at which v is changing is

only dependent on the value of t.

• In nature, many phenomena do not only change according to time. Instead,

their rate of change may be influenced by the value they currently

have, or to the value that some other phenomenon has, or even

the rate at which the other phenomenon is changing.

• Equations that relate rates of change to the value of a function (and possibly

other factors) are called differential equations.

Differential equations

If y is an unknown function of t, then a differential equation, or DE,

is an equation that involves a combination of t, y and/or the derivatives of

y.

If the DE is true when a particular function y and its derivative(s) are

substituted into the DE, then y is a solution to the DE.

• In all of the examples we will study, the DE will be of the form y′ = . . .. A

solution to the DE will be another function that, when substituted

into the DE, makes the DE true.
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§11.2. DES AND EXPONENTIAL GROWTH Case Study 29: Algal blooms

11.2 DEs and exponential growth

• Earlier we studied exponential growth and decay. On Page 133 we stated

“Any phenomenon that has a rate of change proportional to the current

amount follows an exponential function”.

• This occurs precisely because such phenomena satisfy simple DEs whose

solutions are exponential functions.

• Many populations satisfy exponential functions.

• Note that we can measure the size of a population in multiple ways, such

as the total number of individuals, the density of individuals, or the total

biomass of the population.

Case Study 29:

Algal blooms

Figure 11.1: Algal bloom in the Atlantic
Ocean. (Source: commons.wikimedia.org.)

Photo 11.1: Close-up view of algae. (Source: DM.)

• Most microscopic algae reproduce asexually, with each mother cell splitting

to form two daughter cells.

• Under normal conditions, factors such as predation and limited resources

keep algal populations under control.

• However, sometimes uncontrolled reproduction occurs, leading to an algal

bloom in which the population can reach 106 individuals per mL of water.
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§11.2. DES AND EXPONENTIAL GROWTH Case Study 29: Algal blooms

• Some blooms are harmful to humans, producing dangerous biotoxins that

pass down food chains. Many algal blooms result directly or indirectly

from human activities, such as an excess of nutrients in water.

• Researchers expect that the frequency and severity of algal blooms will

increase due to further environmental degradation.

• Because the rate at which algae reproduce is often proportional to the

current population size, algal populations follow exponential functions for

some time periods.

Question 11.2.1

Consider a population of algae growing at 2% per hour. If N(t) is the

population of algae per mL of water at time t in hours then the population

size satisfies the DE N ′ = 0.02N.

(a) Explain carefully, in words, what the DE is saying.

(b) Show that N(t) = Ae0.02t is a solution to the DE, where A is a constant.

(c) If we know that the population at time t = 0 hours is 500 algae per mL

of water, find the population at any time t.
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§11.2. DES AND EXPONENTIAL GROWTH Case Study 30: Poo

DE for exponential growth and decay

Any function N(t) with a rate of change proportional to the value of N (at

any time), and a change constant equal to r per time period, follows the

DE N ′ = rN .

The solution to the DE is N(t) = N0e
rt, where N0 is the value of N at

time 0.

Question 11.2.2

Demonstrate mathematically why the solution to the DE N ′ = rN is the

exponential function.

Case Study 30:

Poo

Photo 11.2: Steaming heap of panda poo. (Source: PA.)

• Escherichia coli (usually shortened to E. coli) are bacteria commonly

found in the lower intestine of warm-blooded animals, including humans.
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§11.2. DES AND EXPONENTIAL GROWTH Case Study 30: Poo

Image 11.2: Left: Low-temperature electron micrograph of E. coli, magnified 10,000 times. Right: Scan-
ning electron micrograph of culture-grown E. coli. (Source: en.wikipedia.org.)

• Most strains of E. coli are harmless in the digestive system, or even ben-

eficial to the host. However, some strains produce toxins, and can cause

food poisoning, gastrointestinal infections and urinary tract infections.

• One such strain is O157:H7, which caused outbreaks of illness in Washing-

ton and California in 1994, and probably came from contaminated salami.

• Because E. coli can survive outside the body for some time, tests for E. coli

are often used to identify faecal contamination in environmental samples

or foods during hygiene checks.

• Under simplifying assumptions (such as relatively unlimited resources) the

rate of increase of a population of E. coli at any time is proportional to

the population size at that time.

• Hence the population follows an exponential function, and it makes sense

to discuss the doubling time of the population.

• Under favourable conditions, the doubling time for a population of E. coli

may be an hour, or even shorter.

• The rapid growth rate is one reason why good hygiene standards are im-

portant in food preparation.

• When studying populations of bacteria, microbiologists commonly count

colony-forming units (CFU), which is the number of live bacterial cells.

(Direct counts of individuals include both dead and living cells.)
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§11.2. DES AND EXPONENTIAL GROWTH Case Study 30: Poo

Question 11.2.3

A population of E. coli in a contaminated food sample increases with a

growth constant of r = 1 per hour. Assume there are 103 CFU/g at time 0.

(a) Write a DE for the population size E(t) in CFU/g after t hours.

(b) Solve the DE in Part (a).

• A recent paper [40] investigates E. coli contamination of pre-cooked meat

products (specifically ham) during the slicing process.

• The study models two sources of contamination:

– from a slicing blade infected with E. coli to clean ham; and

– from infected ham, to a clean slicing blade, then to clean ham.

Photo 11.3: Ham with (subtle) faecal contamination. (Source: PA.)
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§11.2. DES AND EXPONENTIAL GROWTH Case Study 30: Poo

One of the research experiments involved:

• inoculating (infecting) ham with “7 log CFU of O157:H7 E. coli” (that is,

107 CFU);

• using a clean blade to slice the inoculated ham;

• using that blade to cut 100 slices of clean ham; and

• counting the number of CFU on each of the 100 slices.

Question 11.2.4

If x is the number of a ham slice from 1 to 100, then log10 of the number of

CFU on each slice Y (x) is modelled by

Y = 2.793× e−0.0105x.

(a) Roughly how many CFU were on Slice 1 and on Slice 100?

(b) Find an expression for the number of CFU on any slice of ham after

any number of hours, assuming the slices are stored under ideal growing

conditions for E. coli.

283



§11.2. DES AND EXPONENTIAL GROWTH

• Given a DE that models a phenomenon, the general solution to the DE

(together with initial conditions) predicts the values of the phenomenon at

various times.

• Scientists are often interested in stable points.

Stable points

The general solution y to a DE may have one or more stable points (also

called equilibrium values), which are points at which y′ = 0. If the value of

the phenomenon ever reaches a stable point, it remains equal to that value

indefinitely.

Question 11.2.5

Why are stable points important scientifically?

Question 11.2.6

In Question 11.2.3 we considered a population of E. coli bacteria that sat-

isfied the DE E ′ = E.

(a) Find all stable population sizes.

(b) Interpret your answer to Part (a).

End of Case Study 30.
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• Many other phenomena satisfy exponential DEs, including temperature

change and alcohol absorption.

Question 11.2.7

When we move an object with one temperature to an environment with a

different temperature, the temperature of the object changes according to

Newton’s Law of Cooling. Assume we place a small object in a room with

temperature equal to a constant T . Let y(t) be the temperature of the

object at any time t.

(a) Derive a DE for the rate of change of temperature of the object.

(b) Your equation should include a constant, say k. What physical factors

would determine the value of k?

(continued over)
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Question 11.2.7 (continued)

In Question 6.2.5 we studied how the temperature changed in hot water

placed in a room with temperature 25 ◦C. We modelled the temperature

y(t) in ◦C at any time t in minutes with

y(t) = 60e−0.05t + 25.

(c) Show that the equation is the solution to the DE y′ = −0.05(y − 25)

and relate the solution to Newton’s Law of Cooling.

(d) Find all stable points and explain your answer.
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Question 11.2.8

Alcohol is mostly absorbed into the bloodstream via the small intestine. The

rate of absorption is proportional to the amount of alcohol that is present

in the digestive tract at any time.

(a) Assume an individual consumes A grams of pure alcohol. Write a DE

for the rate of change of the amount of alcohol D in the digestive

system at any time, and solve the DE.

(b) Find an expression for the total amount of alcohol absorbed by the

body at any time, ignoring elimination.

(c) Find an expression for blood alcohol content (BAC) if the drinker has

(continued over)

287
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Question 11.2.8 (continued)

mass M g, and a fraction r of their mass is water. (Hint: ignore

elimination, and remember to convert BAC to a percentage.)

(d) If the body can eliminate alcohol at a constant rate of V % per hour,

find an expression for the BAC at any time t in hours.

(e) Compare your answer to the equation given in Question 9.6.2.
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11.3 Limited scope for growth

• Exponential growth is unconstrained; that is, it continues growing indefi-

nitely. Unconstrained growth is unrealistic over extended time periods.

Question 11.3.1

Let N(t) be the size of a fish population in a certain lake at any time t in

months. If the natural rate of increase of the fish population is 10% per

month, then N(t) satisfies the differential equation N ′ = 0.1N . Assume

that at time 0 there are 30 fish.

(a) Draw a rough sketch of the predicted population versus time.

Photo 11.4: Pucker up. (Source: PA.)

(b) Environmental analysis has shown that the maximum fish population

the lake can support is 1000. What is a more realistic rough sketch of

N(t) over time?
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• During unconstrained exponential growth, the proportional rate of increase

is constant at all times, irrespective of the population size.

• A constant proportional rate of increase is often quite accurate over some

time periods.

• However, in most cases populations cannot continue to show unconstrained

growth: environmental conditions and limited availability of resources re-

stricts growth to a maximum population size.

Carrying capacity

The carrying capacity of an ecosystem is the maximum population size

of a particular organism that can be supported by resources within the

ecosystem. Resources may include food, water, shelter and sunlight.

A population size below the carrying capacity will typically increase towards

the carrying capacity, whereas a population size above the carrying capacity

will typically decrease to the carrying capacity.

• The carrying capacity for a particular organism often changes over time;

for simplicity, we will assume it remains constant.

• In more sophisticated population models than the exponential model, the

rate of change in the population will:

– increase as the population size gets bigger and there are more indi-

viduals who can reproduce; and

– decrease as the population size gets closer to the carrying capacity

and individuals compete for scarce resources.

• One such model that reflects these features is the logistic model.

• The power of the logistic model is the interaction between the two opposing

growth and competition factors.
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Question 11.3.2

The logistic DE is

N ′ = r N

(
K −N
K

)
,

where N(t) is an unknown function (such as a population), r is the uncon-

strained growth rate and K is the carrying capacity.

Explain carefully, in words, what the DE is saying.

In particular, what is the significance of the term

(
K −N
K

)
?

• Just as it is possible to solve the exponential DE, it is also possible to find

a solution to the logistic DE.
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Solution to the logistic DE

Any function N(t) that changes at a rate proportional to its value (with

unconstrained growth rate r), and also in reverse proportion to how close

the value is to a carrying capacity K, is modelled by the logistic DE

N ′ = r N

(
K −N
K

)
.

If N0 is the value of N at time 0 then the solution to the DE is

N(t) =
KN0

N0 + (K −N0)e−rt

Question 11.3.3

From the equation for N ′, explain why the solution to the logistic DE dis-

plays the following properties. If the initial population is:

(a) much less than the carrying capacity, then the population initially grows

approximately exponentially.

(b) close to the carrying capacity, then the population grows slowly towards

the carrying capacity.

(c) more than the carrying capacity, then the population declines approxi-

mately exponentially towards the carrying capacity.
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Case Study 31:

Very fishy

Photo 11.5: Left: Southern Yellowtail Scad (Trachurus novaezelandiae). Right: Globe Fish (Diodon
nichthemerus). (Source: DM.)

• The logistic model applies to many populations. A common use is fish

population modelling, including harvest rates and stock management.

Example 11.3.4

A fish species with an unconstrained population growth rate of 10% per

month lives in a reef with a carrying capacity of K=1000 fish. Assume that

growth is logistic, and that the initial population is N0 = 30 fish.

The function for the fish population N(t) at time t months satisfies the DE

N ′ = 0.1 N

(
1000−N

1000

)
.

Substituting N0, r and K in the solution for the logistic DE gives the

following function for the number of fish at time t months:

N(t) =
1000× 30

30 + (1000− 30)e−0.1t

=
30000

30 + 970e−0.1t
(continued over)
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Example 11.3.4 (continued)

• Figure 11.2 shows the population for a period of 80 months. Note the

typical sigmoidal “S”-shaped logistic curve.

• Because the initial population is much less than the carrying capacity,

the population initially rises close to exponentially, then the (actual)

growth rate slows and the population gradually approaches the carrying

capacity.

• For comparison, Figure 11.3 shows the resulting graph when the ini-

tial population is N0 = 1500. Here, the population rapidly decreases

towards the carrying capacity.
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Figure 11.2: Logistic model with initial popula-
tion 30.
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Figure 11.3: Logistic model with initial popu-
lation 1500.

Photo 11.6: Left: Moonlighter (Tilodon sexfasciatus). Right: Five-line Snapper (Lutjanus quinquelineatus)
and Black-spot Snapper (Lutjanus fulviflammus). (Source: DM.)

End of Case Study 31.
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Example 11.3.5

The logistic DE can also model the size or mass of individual organisms.

(Organisms are effectively populations of cells.)

• In [26], researchers studied a particular species of North-Queensland

bird, the Yellow-bellied Sunbird Nectarinia jugularis, to predict the

expected masses and growth rates of hatchlings.

• Researchers visited a number of nests for 14 days, weighing individually

marked nestlings. The data show that when sunbirds hatch, they:

– typically weigh around 0.92 ± 0.13 g;

– initially grow by about 0.62 g per day;

– ultimately weigh around 8.92 ± 1.14 g (males) or 8.12 ± 1.11 g

(females) as adults.

• Researchers modelled the mass M (in g) of nestling sunbirds t days

after birth with the equation

M =
8.6

1 + e−0.37(t−5.8)
.

• Figure 11.4 shows a graph of the measured data and the model.
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Figure 11.4: Mean daily masses of yellow-bellied sunbirds, as measured and as modelled.
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Case Study 32:

Overfishing annoys an oyster

Photo 11.7: Oysters. (Source: MG.)

• Chesapeake Bay is a large estuary on the east coast of the United States,

near the states of Virginia and Maryland.

• It has a surface area of more than 11000 km2, with a shoreline length of

more than 18000 km.

• More than 150 watercourses enter the bay, including the Potomac River,

which runs through Washington.

• In the past, the bay supported a diverse range of flora and fauna, including

an abundant shellfish population, most notably oysters.

• However, the bay has experienced serious environmental degradation due

to over-use, overfishing, and polluted runoff from agriculture, urban areas

and industry.

• Substantial marine dead zones, which are areas of water so low in oxygen

that they are unable to support life, are often found within the bay.

• These dead zones often result from large algal blooms, and are clearly

disastrous to the ecosystem.
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• Harvesting oysters is a long-term commercial industry in Chesapeake Bay,

however, the size of the population (and hence the harvest) has drastically

reduced, due to overharvesting and environmental damage; see Figure 11.5.

• The total current biomass of the oyster population is less than 0.5% of the

previous, long-term, pre-harvesting total.

• Between 1982 and 2008, the value of the oyster harvest reduced by 88%.

• Considerable time, research, money and education are being devoted to

developing and implementing a more sustainable, comprehensive manage-

ment strategy.

• The paper [45] studied the population of market-sized oysters in the Mary-

land part of the Chesapeake Bay.

• Using data from 1994 – 2007, researchers found that the effective uncon-

strained growth rate of market-sized oysters is around r = 0.133 per year.

• The estimated carrying capacity of the Maryland part of the bay is around

5× 109 market-sized oysters.
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Figure 11.5: Annual Chesapeake Bay oyster harvests. Left: 1880 – 2008. Right: 1960 – 2008.
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Question 11.3.6

The logistic DE model for the population N(t) of market-sized oysters is

N ′ = 0.133 N

(
5× 109 −N

5× 109

)
.

(a) Find all stable population sizes.

(b) Interpret your answer to Part (a).

(c) In 2007, around 50× 106 oysters were harvested. Assuming a constant

catch size every year, write a new DE for N(t), and explain your answer.

(continued over)
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Question 11.3.6 (continued)

(d) Find all new stable population sizes.

(e) Interpret your answer to Part (d).

(continued over)
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Question 11.3.6 (continued)

(f) In resource management (especially fisheries management) the Maxi-

mum Sustainable Yield (MSY) is the largest harvest size that can be

maintained indefinitely. Find the MSY for the population. (Hint: first

find the population at which the MSY occurs.)

(continued over)
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Question 11.3.6 (continued)

(g) The current population of market-sized oysters is 81 × 106. How sus-

tainable is the 2007 harvest and how achievable is the MSY?

(h) Often, harvest rates are a fixed percent of the population, rather than a

fixed number of individuals. From 1994–2007, the average annual rate

was around 28% of the population. Write a new DE for N(t).

(i) Explain why an exponential DE can approximate the above DE quite

accurately. Estimate the oyster population in the year 2107 if conditions

remain unchanged and current harvest rates are maintained.

(continued over)
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Question 11.3.6 (continued)

(j) Would you expect your answer to Part (i) to occur in reality? Why?

(k) Make some brief recommendations to assist the government with long-

term oyster stock management.

Photo 11.8: Over-exploited? (Source: MG.)

End of Case Study 32.
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§11.4. EULER’S METHOD

11.4 Euler’s method

• We can solve many DEs analytically; that is, using integration and algebra,

it is possible to find an exact solution to the equation.

• All of the DEs we have studied so far can be solved analytically.

• However, for more complex cases, especially with systems of DEs, it is not

possible to find exact solutions.

• We can find approximate solutions using numerical algorithms (recall the

use of Newton’s method for approximately solving equations).

• One of the simplest techniques for solving DEs approximately is Euler’s

method.

• We will describe how to use Euler’s method to solve a simple DE as an

illustration of how the method works. In practice, you would not use Eulers

method on this DE, as there is an exact solution.

Euler’s method (informal description)

To approximate an unknown function y:

1. Choose a small stepsize h, and start at the given initial point.

2. Use the DE to calculate the (estimated) slope of the function at the

current point.

3. Approximate the unknown function as a short straight line, starting

from the current point, with:

– width equal to the stepsize h;

– slope equal to the estimated slope of the function calculated using

the expression for the derivative; and hence

– height equal to width multiplied by slope.

– Advance the current point to the end point of the straight line.

4. If finished then stop, otherwise return to Step 2.
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Euler’s method (semi-formal description)

Given a DE y′ = . . . and an initial value (x0, y0):

1. Choose a small stepsize h, and start at (x, y) = (x0, y0).

2. Substitute the current values of x and y into the DE to estimate an

approximate value for y′.

3. Set y = y + h× y′ and x = x + h.

The new point (x, y) is the next approximate function value.

4. If x has reached the desired value then stop, else return to Step 2.

Question 11.4.1

Draw a diagram illustrating Euler’s method.

Example 11.4.2

Use Euler’s method to find an approximate solution to the DE y′ = 0.1y,

with initial condition y0 = 100 when x0 = 0. Estimate y when x = 5, using

a stepsize of h = 1.

(continued over)
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Example 11.4.2 (continued)

(Note that the above DE is exponential, so has an exact solution. In practice,

we would not use Euler’s method to solve it; this is for illustration.)

Answer: With a stepsize of h = 1, to find the approximate value of y

when x = 5 we proceed as shown in Figure 11.6. (Remember that at each

step, the new value of x equals the previous value of x plus h.)

Step x y y′ = 0.1y h× y′ new x new y

0 0 100 10 10 1 110
1 1 110 11 11 2 121
2 2 121 12.1 12.1 3 133.1
3 3 133.1 13.31 13.31 4 146.41
4 4 146.41 14.641 14.641 5 161.051

Figure 11.6: Five steps of Euler’s method.

So when x = 5, y ≈ 161.051.

Figure 11.7 shows a graph of the approximate solution. The five y values

from the last column of the above table are marked as circles, with straight

lines approximating the function between these points.
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Figure 11.7: Approximate solution to the DE y′ = 0.1y with y(0) = 100.
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There are some important things to know about Euler’s method.

• It gives an approximate solution, not an exact solution. There will be

numerical inaccuracies in the answer.

• The choice of stepsize is very important: smaller values will give a more

accurate answer, but take longer to calculate.

• The method can result in large numerical inaccuracies if used over a very

large range of x values.

• Despite these limitations, the method can give very good approximate

solutions to quite difficult problems.

Example 11.4.3

In Example 11.4.2 we used a stepsize of h = 1 to solve y′ = 0.1y.

Figure 11.8 shows approximate solutions with a stepsize of h = 2.5 (bottom

curve), h = 1 (middle curve) and the exact solution (top curve).

As h becomes smaller, the solution becomes more accurate (that is, moves

closer to the top curve).
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Figure 11.8: Approximate and exact solutions to the DE y′ = 0.1y with y(0) = 100.
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§11.4. EULER’S METHOD Case Study 33: Cancer

Case Study 33:

Cancer

Photo 11.9: Left: x-ray of left forearm showing the destruction of bone due to cancer in the ulna. Right: x-
ray of right forearm (different patient) showing a titanium pin stabilising the pathological fracture through
the weakened bone. (Source: Qld Health and DM.)

Photo 11.10: Axial CT image with contrast shows enhancing metastatic cancers with associated vasogenic
oedema (swelling) within the brain. The metastases are due to breast cancer. (Source: Qld Health and
DM.)
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§11.4. EULER’S METHOD Case Study 33: Cancer

Photo 11.11: An axial CT image of the chest illustrates a primary cancer within the mediastinum extending
to the anterior chest wall. (Source: Qld Health and DM.)

Photo 11.12: X-ray of a chest displaying many classic “cannonball” metastases. (Source: Qld Health and
DM.)
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§11.4. EULER’S METHOD Case Study 33: Cancer

Photo 11.13: Tumour from a rooster. (Source: PA.)

• Cancer comprises a large range of diseases, affecting many different parts

of the body. It arises from the uncontrolled, rapid growth of abnormal cells

that interfere with usual body function.

• Cancerous cells can metastasise, spreading to other parts of the body.

• Common cancers include cancers of the lung, prostate (males), breast

(mostly females), colon, skin, bladder, kidney and blood (leukaemia).

• Smoking and excessive alcohol consumption are major risk factors.

• Cancer is a leading cause of death in humans. Figure 11.9 lists all leading

causes of death for Australians, by gender.

Cause of death M Cause of death F

Ischaemic heart disease 12444 Ischaemic heart disease 11221
Lung/trachea cancer 5025 Stroke 7246
Stroke 4727 Dementia/Alzheimer disease 5464
Chronic lower respiratory disease 3387 Lung/trachea cancer 2921
Prostate cancer 3031 Chronic lower respiratory disease 2868
Dementia/Alzheimer disease 2707 Breast cancer 2774
Colon/rectal cancer 2230 Diabetes 2050
Blood/lymph cancer 2220 Heart failure 2034
Diabetes 2141 Colon/rectal cancer 1890
Suicide 1709 Kidney/urinary disease 1756

Figure 11.9: Leading causes of death in Australians in 2008. (Source: Australian Bureau of Statistics.)
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§11.4. EULER’S METHOD Case Study 33: Cancer

• Common cancer treatments include:

– Chemotherapy, which involves the infusion of highly toxic chemicals

into the body, killing rapidly dividing cells. (Recall that rapid division

is a common characteristic of cancerous cells.)

– Radiation therapy, which involves exposing cells to radiation and hence

damaging their DNA, leading to cell death.

– Surgery, which involves removing cancerous tissue from the individual.

– Stem cell transplants (or bone marrow transplants), which involves

infusing healthy stem cells into an individual with cancer.

• All of these treatments can have minor to major side effects, including

fatigue, nausea, mouth ulcers, hair loss, cognitive problems, infection,

anaemia, infertility, graft-versus-host disease, radiation burns or death.

• Determining the precise treatment regime and dosages involves a trade-off

between the beneficial impact of reducing tumour size and the (often severe

or life-threatening) side-effects resulting from the treatment.

• A large amount of research is ongoing, trying to understand different forms

of cancer, including the search for better methods of management, treat-

ment and cure.

• An important component of cancer research is developing better models of

tumour growth and treatment.

• For example, the paper [43] discusses various models of tumour growth,

including the logistic model. (Tumours are essentially populations of cells.)

• Tumours cannot grow indefinitely; their maximum size is determined by

the physiology of the sufferer and by the need for tumour cells to receive

nutrients (such as oxygen).

• The maximum possible tumour size corresponds to the carrying capacity

K in the logistic DE.
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§11.4. EULER’S METHOD Case Study 33: Cancer

Example 11.4.4

Multiple myeloma is a cancer of the blood plasma cells, which are an integral

part of the immune system. It is one of the more common blood cancers,

affecting 4 people per 100,000. Average age at diagnosis is around 60, and

researchers are yet to identify the cause or any clear risk factors. Multiple

myeloma is incurable, but treatment with high-dose chemotherapy and stem

cell grafts has extended life expectancy (which is currently around 60 months

if diagnosis is early).

Question 11.4.5

The paper [43] models multiple myeloma tumour growth using the logistic

equation. A newly diagnosed, early-stage tumour will typically have: a size

of around 109 cells; a doubling time of about 61 days so the growth rate is

r ≈ 0.0114 per day; and a maximum size of about 4× 1012 cells.

(a) Write a DE for the rate of change of the size C(t) of the tumour.

Hint: the logistic DE is C ′ = r C

(
K − C
K

)
.

(b) Assume that the rate at which chemotherapy kills cancerous cells is

proportional to the tumour size. (This is a very rough model.) Write a

new DE for the rate of change of the size C(t) of a tumour undergoing

treatment.
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Example 11.4.6

One treatment regime for multiple myeloma involves 12 cycles of chemother-

apy, at intervals of six weeks, with the drugs melphalan, prednisone and

thalidomide administered on Days 1 to 4 of each cycle.

Figure 11.10 shows modelled multiple myeloma tumour sizes with no treat-

ment (left) and with treatment destroying 10% of the cancer cells per day

for the four days of treatment and the two subsequent days, on each

treatment cycle. The treatment graph was produced using Euler’s method.
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Figure 11.10: Modelled multiple myeloma tumour size with no treatment (left) and treatment (right).

Question 11.4.7

Comment on the graphs in Figure 11.10. In particular, comment on the

benefit of the modelled treatment.

End of Case Study 33.
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11.5 Space for additional notes
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Chapter 12: Systems of DEs

On the farm, every Friday

On the farm, it’s rabbit pie day.

So, every Friday that ever comes along,

I get up early and sing this little song

Run rabbit - run rabbit - Run! Run! Run!

Don’t give the farmer his fun! Fun! Fun!

He’ll get by

Without his rabbit pie

So run rabbit - run rabbit - Run! Run! Run!

Artist: Flanagan and Allen (www.youtube.com/watch?v=SVdoZNxtL8k)

Image 12.1: The wild hunt: Åsg̊ardsreien (1872), Peter Nicolai Arbo (1831 – 1892), Nasjonalgalleriet, Oslo.
(Source: en.wikipedia.org)
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§12.1. INTRODUCTION TO SYSTEMS OF DIFFERENTIAL EQUATIONS

12.1 Introduction to systems of differential
equations

• The DE models we have studied so far have all modelled a single, distinct

phenomenon.

• Often, multiple factors interact, requiring more sophisticated models.

• For example:

– in predator-prey relationships, changes in population sizes of two species

are interrelated;

– in species with multiple distinct life stages, changes in the population

sizes within each stage depend on the numbers in other stages; and

– the rates at which epidemics spread through populations are influenced

by the number of infected individuals and also by the number of

susceptible individuals.

• Typically, models for these more complex situations use a system of DEs

(that is, more than one DE).

• Just as with single DEs, analytical solutions exist for some systems of DEs,

but other systems require approximate solution.

• Euler’s method can be used to solve a system of DEs approximately, by

applying a single iteration to each equation in turn, and then repeating.

Photo 12.1: Predators: Siberian tigers, Panthera tigris altaica. (Source: PA.)
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§12.2. GOING THROUGH A DIFFICULT STAGE

12.2 Going through a difficult stage

• We previously modelled populations using exponential and logistic DEs. In

each case we assumed that populations were homogeneous; that is, every

individual in the population had an identical impact on population growth.

• Many organisms have different life stages with substantial differences in

typical survival rates and reproduction rates.

• For example, in many species, small juveniles have a low survival rate and

do not reproduce, whereas mature individuals have a high survival rate

and typically do reproduce.

• Hence, simple models based on single DEs are inaccurate for more advanced

organisms, particularly those with long life spans. In such cases, systems

of DEs give rise to better models.

• In one type of model, populations are classified into groups based on their

life stages, such as juvenile or breeding adult.

• Rather than applying a constant growth rate to every individual in the

population, a system of DEs includes:

– the distribution of the population within the distinct groups;

– differing rates of reproduction and death within groups; and

– the transitions of individuals between groups.

• Life-cycle diagrams are useful aids to writing the equations in a system

of DEs. These diagrams show the rates of transition between stages.

Life-cycle diagram

Life-cycle diagrams represent all possible transitions between stages in

the life-cycle of an organism. Each stage is represented as a circle in the

diagram, with a directed arrow joining Stage A to Stage B whenever it is

possible for an individual to transition from Stage A to Stage B. Each arrow

has an associated number, which is the rate of transition.
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§12.2. GOING THROUGH A DIFFICULT STAGE

• The general form of a stage in a life-cycle diagram is shown in Figure 12.1.

Not all stages will have all of these arrows, as some particular transitions

may not be possible.

Some stage

from other stages to other stages

Figure 12.1: A stage in a life-cycle diagram, showing some transitions.

• In order to draw the life-cycle diagram for an organism, we need to know:

– the number of stages;

– all possible transitions to and from each stage, including:

∗ reproduction;

∗ transitions due to the passage of time, or other factors; and

∗ deaths.

– the number associated with each possible transition.

• Once we have drawn a life-cycle diagram, it is usually easy to write a system

of DEs for the number of individuals in each stage.

Question 12.2.1

Consider an idealised fish species with two distinct life stages: juvenile and

adult. Each month, on average:

• Juveniles do not breed, have a 50% probability of surviving to adult-

hood, and a 50% probability of dying.

• Adults produce 5 offspring, and then die.

(continued over)
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Question 12.2.1 (continued)

Photo 12.2: Bighead Gurnard Perch (Neosebastes pandus). (Source: DM.)

(a) Draw a life-cycle diagram for this fish, with two stages.

(b) Let the populations of juveniles and adults at any time be J(t) and

A(t). Write a system of DEs for these populations.

(continued over)

318



§12.2. GOING THROUGH A DIFFICULT STAGE

Question 12.2.1 (continued)

(c) Assume that a specific population comprises 20 juveniles and 2 adults

at time t = 0 months. Use Euler’s method and a stepsize of one month

to estimate the number of fish in each stage at time t = 2 months.

(d) Sometimes it is convenient to include death as a stage in a life-cycle

diagram. Draw a life-cycle diagram with three stages, including death.

(continued over)
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Question 12.2.1 (continued)

(e) Write a DE for D(t), the total number of dead fish at any time.

(f) Assume that a specific population comprises 20 juveniles, 2 adults and

no dead fish at time t = 0 months. Use Euler’s method and a stepsize of

one month to estimate the number of dead fish at time t = 2 months.
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Case Study 34:

Total turtle turmoil.

Image 12.2: Loggerhead sea turtle.
(Source: en.wikipedia.org.)

Photo 12.3: Sea turtle species. (Source: DM.)

• The loggerhead sea turtle (Caretta caretta) is a large marine turtle, reach-

ing a length of around 1 m and a mass of more than 100 kg.

• The species is distributed throughout temperate, subtropical and tropical

regions, and nests in a number of countries, including Australia.

• Individuals often live for more than 50 years.

• The species is listed as threatened, largely due to human activity, so is

likely to become endangered within the foreseeable future.

• Ecologists have studied these turtles in detail, in order to better understand

how populations change over time, to investigate possible management

strategies and predict the impacts of further environmental change and

human activity.

• Researchers in [5] and [8] identified that the life-cycle of these turtles could

be divided into seven distinct stages, and developed a population model

based on these seven stages.

• (For interest, the researchers used a matrix model rather than a system of

DEs. However, such models are equivalent to using a system of DEs and

Euler’s method with a stepsize of 1.)
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§12.2. GOING THROUGH A DIFFICULT STAGE Case Study 34: Total turtle turmoil.

• We will study a simplified version of their model, with the seven stages

collapsed into three for ease of calculation.

• Figure 12.2 shows the life stages used for the simplified model, along with

the estimated proportion of the total turtle population, and the global

number of individuals, in each stage.

Stage Description Age (years) Proportion Global population

A hatchlings < 1 0.20651 1445570
B youth 1− 23 0.79097 5536790
C breeding adult 24− 54 0.00252 17640

Figure 12.2: Loggerhead sea turtles classified into three life stages.

• Each year, individuals transition between stages with the following proba-

bilities:

– Hatchlings become youths (with probability 0.6747) or die.

– Youths become breeding adults (probability 0.0004335), remain in the

youth stage (probability 0.76888), or die.

– Breeding adults produce new hatchlings (77.36 per adult), and either

remain as breeding adults (probability 0.8089) or die.

• Researchers estimated that the global population across all life stages was

7 million.

Question 12.2.2

(a) Draw a life-cycle diagram for the loggerhead sea turtle, with three stages.

(continued over)
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Question 12.2.2 (continued)

(b) Write a system of DEs for the turtle population.

(c) Use Euler’s method with a stepsize of 1 year to estimate the turtle

population in each stage after one year.

(d) Find the total turtle population after one year. What does this mean?

(continued over)
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Question 12.2.2 (continued)

(e) Find the proportion of the population in each life stage after one year,

and compare your answer with the proportions in the initial population.

What does this mean?

(f) Researchers and authorities have proposed various conservation strate-

gies for the sea turtle. Briefly discuss some possible strategies, and

explain how the population model would change to reflect them.

A computer model is a convenient way of studying the population for an ex-

tended time period.

Program specifications: Develop a Python program that uses Euler’s

method with a stepsize of 1 to model the turtle population for 30 years.
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§12.2. GOING THROUGH A DIFFICULT STAGE Case Study 34: Total turtle turmoil.

Program 12.1: Turtles� �� �
1 # Uses Euler ’ s method to model the t u r t l e populat ion .
2 from f u t u r e import d i v i s i o n
3 from pylab import ∗
4

5 # I n i t i a l i s e v a r i a b l e s .
6 maxt = 30
7 Apops = ze ro s (maxt+1)
8 Bpops = ze ro s (maxt+1)
9 Cpops = ze ro s (maxt+1)

10 Apops [ 0 ] = 1445570
11 Bpops [ 0 ] = 5536790
12 Cpops [ 0 ] = 17640
13 s t e p s i z e = 1
14

15 # Step through Euler ’ s method f o r 30 years .
16 i = 1
17 whi le i < (maxt+1) :
18 dA = −Apops [ i −1] + 77 .36 ∗ Cpops [ i −1]
19 dB = 0.6747 ∗ Apops [ i −1] − 0.23112 ∗ Bpops [ i −1]
20 dC = 0.0004335 ∗ Bpops [ i−1]− 0 .1911 ∗ Cpops [ i −1]
21 Apops [ i ] = Apops [ i −1] + s t e p s i z e ∗ dA
22 Bpops [ i ] = Bpops [ i −1] + s t e p s i z e ∗ dB
23 Cpops [ i ] = Cpops [ i −1] + s t e p s i z e ∗ dC
24 i = i + 1
25

26 # Output the graph .
27 t imes = arange (0 , maxt+1)
28 p lo t ( times , Apops , ”bx” , mew=3)
29 p lo t ( times , Bpops , ” rx ” , mew=3)
30 p lo t ( times , Cpops , ”gx” , mew=3)
31 p lo t ( times , Apops+Bpops+Cpops , ”kx” , mew=3)
32 x l a b e l ( ”Time ( years ) ” )
33 y l a b e l ( ”Number o f t u r t l e s ” )
34 t i t l e ( ” Turt le populat ion ” )
35 t ex t (10 .3 ,4100000 , ” Total ” )
36 t ex t (1 ,4000000 , ” Stage B” )
37 t ex t (1 ,1400000 , ” Stage A” )
38 t ex t (5 . 5 , 100000 , ” Stage C” )
39 g r id ( True )
40 # show ( )
 	� �
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• Figure 12.3 shows the output from running the program.
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Figure 12.3: Turtle population modelled using Euler’s method.

Question 12.2.3

The model predicts that after 30 years, the total population will be 1.36

million, with 280600 hatchlings, 1077300 youths, and 3430 breeding adults.

(a) Find the proportion of the total population in each stage, and comment.

(b) Predict the total population after 30 more years (60 years from now).

End of Case Study 34.
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12.3 Eat or be eaten

Photo 12.4: Left: skeleton of Tyrannosaurus rex. Right: skeleton of Triceratops horridus. (Source: PA.)

• Systems of DEs can model interactions between multiple species.

• In laboratory situations there is control over these interactions. In nature,

inter-species interactions are highly complex.

• The classical predator/prey problem in ecology considers what happens to

the populations of two species if one preys on the other.

• We will first investigate a controlled example, then model a real interaction.

Case Study 35:

Frogs and crickets

• One method of predicting what may happen in a real-world situation is to

simulate it in a laboratory.

• Unpredictable phenomena complicate and impact predator/prey interac-

tions in nature. However, controlled laboratory simulations can give valu-

able insight into real situations.

• Consider a controlled, time-compressed laboratory experiment simulating

the effects of immigration, emigration, births and deaths on populations of

frogs (predators) and crickets (prey).
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• Initially the experiment comprises 60 frogs and 400 crickets. Each day:

– 15 crickets are introduced into the experiment (modelling immigration

and birth of crickets);

– 25% of the frogs each eat a cricket (death of crickets);

– 12 frogs are removed (modelling emigration and death of frogs); and

– for each 25 crickets present, one new frog is introduced (modelling birth

and immigration of frogs based on available food resources).

Photo 12.5: Left: Striped burrowing frog, Litoria alboguttata. Right: cricket. (Source: DM.)

Question 12.3.1

Let F (t) and C(t) be the populations of frogs and crickets at time t in days.

(a) Write a DE for the rate of change of each of the populations.

(continued over)
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Question 12.3.1 (continued)

(b) Show that the following equations are solutions to the DEs. (Hint: if

y = sin kt then y′ = k cos kt. If y = cos kt then y′ = −k sin kt.)

F = 40 sin 0.1t + 60 C = 100 cos 0.1t + 300.

(continued over)
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Question 12.3.1 (continued)

(c) Draw a rough sketch of the populations of frogs and crickets, and briefly

interpret the graphs.

• The above model of inter-species predator/prey interactions between frogs

and crickets is very simple, but it is not completely unreasonable.

Photo 12.6: Left: genuine KTF. Right: fossilised cricket. (Source: PA.)

End of Case Study 35.
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• There are many models of predator/prey relationships. Standard assump-

tions are that:

– the prey species has no other predators, and the predator species has

no other prey; and

– the prey species breeds rapidly and individuals do not compete with

each other, but the predator species breeds more slowly and individuals

compete with each other.

Photo 12.7: Left: gray wolf (Canis lupus). Right: elk (Cervus canadensis). (Source: PA.)

Question 12.3.2

Let P and Q be populations of predators and prey (respectively). How do

the values of P and Q influence the rate of change of each of P and Q? In

each case, identify whether the impact is positive or negative.

(a) Factors influencing P ′:

(b) Factors influencing Q′:

• The best-known predator/prey model is the Lotka-Volterra model.
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Lotka-Volterra model

Let P (t) and Q(t) be the sizes of populations of a predator and prey species

respectively, at any time t. The Lotka-Volterra model represents the pop-

ulation movements in the following system of DEs:

Q′ = aQ− bPQ
P ′ = −cP + dPQ

where a, b, c and d are positive constants whose values depend on the par-

ticular species being modelled.

Photo 12.8: Left: red fox (Vulpes vulpes). Right: cottontail rabbit (Sylvilagus sp.) (Source: PA.)

Question 12.3.3

Carefully explain the meaning of each term in the Lotka-Volterra equations.

In particular, explain the physical relevance of the terms involving PQ.
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It is not possible to find a general solution to the Lotka-Volterra equations;

however, we can find approximate solutions using Euler’s method.

Case Study 36:

Snowshoe hares and Canadian lynx

Image 12.3: Canadian lynx chasing a snowshoe hare. (Source: www.animalspedia.com.)

• The Canadian lynx, Lynx canadensis, is a member of the feline family

distributed predominantly in Canada and Alaska.

• Lynx are carnivorous, with individuals weighing 8 to 15 kg, and living for

up to 15 years.

• The primary food source of the Canadian lynx is the snowshoe hare (or

varying hare), Lepus americanus. The hare has large hind feet (for moving

on snow) and turns white in winter.

• People have hunted these species for their fur for many years. Records of

hare and lynx harvests dating from the 1730s allow population estimates

over an extended time.

• Figure 12.4 shows a graph of these data over 90 years. Clearly, there is

a continuing series of reasonably regular fluctuations in the sizes of both

populations.

• The graph is similar to the periodic population movements in the laboratory-

controlled predator/prey relationship between frogs and crickets.
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Figure 12.4: Numbers of Canadian lynx and snowshoe hares. (Source: [27].)

• Of course, interactions in nature are much more complex than those in

controlled experiments; hares and lynx interact with other species as well.

• Figure 12.5 illustrates major dietary links within the food web of the Cana-

dian boreal forest in which lynx and hare live. (Links that directly influence

Snowshoe hares are highlighted.)

Figure 12.5: Major dietary interactions (food web) of the Canadian boreal forest. (Source: [42].)
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• Figure 12.5 (which is itself a model of reality) shows that many food-related

factors influence the populations of hares and lynx.

• However, the hare typically forms a dominant component of the food source

for lynx (up to 95%).

• Hence it is not unreasonable to model the populations of both species as a

simple interaction in which lynx prey on hares.

Question 12.3.4

Let L(t) and H(t) be the populations of lynx (predators) and hares (prey)

respectively, measured in thousands. The Lotka-Volterra equations

are:

H ′ = aH − bHL L′ = −cL + dHL

(a) How would “lynx become extinct” be written mathematically?

(b) If all lynx died suddenly from disease, what does the model predict will

happen to the population of hares, and why?

(c) Is your answer to Part (b) biologically realistic? What would probably

happen in reality?

(continued over)
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Question 12.3.4 (continued)

(d) If a = 0.0484, b = 0.028, c = 1 and d = 0.032, find all pairs of stable

population sizes and interpret your answer.
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Example 12.3.5

Data from the Canadian Government and the Hudson’s Bay Company es-

timated the populations of hare and lynx in part of their range from 1900

to 1920. Figures 12.6 and 12.7 show the data. (All population units are in

thousands.)

Year Hares Lynx Year Hares Lynx Year Hares Lynx Year Hares Lynx
1900 30 4 1905 20.6 41.7 1910 27.1 7.4 1915 19.5 51.1
1901 47.2 6.1 1906 18.1 19 1911 40.3 8 1916 11.2 29.7
1902 70.2 9.8 1907 21.4 13 1912 57 12.3 1917 7.6 15.8
1903 77.4 35.2 1908 22 8.3 1913 76.6 19.5 1918 14.6 9.7
1904 36.3 59.4 1909 25.4 9.1 1914 52.3 45.7 1919 16.2 10.1

1920 24.7 8.6

Figure 12.6: Populations of lynx and hares (in thousands).
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Figure 12.7: Graph of the populations of lynx and hares (in thousands).

We can use Euler’s method to model the population sizes.

Program specifications: Develop a Python program that uses Euler’s

method with a stepsize of 0.1 year to model the populations of lynx and hares.

Assume that a = 0.0484, b = 0.028, c = 1 and d = 0.032 (in the correct units).
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Program 12.2: Lotka-Volterra model of hares and lynx.� �� �
1 # Uses Euler ’ s method and Lotka−Vol te r ra equat ions to model
2 # popu la t ions o f lynx and hare from 1900 to 1920 .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5

6 # I n i t i a l i s e v a r i a b l e s f o r Euler ’ s method .
7 s s =0.1
8 time=arange ( 0 , 2 0 . 1 , s s )
9 a = 0.484

10 b = 0.028
11 c = 1
12 d = 0.032
13 H = ze ro s ( s i z e ( time ) )
14 L = ze ro s ( s i z e ( time ) )
15 H[ 0 ] = 30 .0
16 L [ 0 ] = 4 .0
17 nn=s i z e ( time )
18

19 # Step through Euler ’ s method with s t e p s i z e s s .
20 # Repeatedly c a l c u l a t e d e r i v a t i v e s then update the ’ next ’

va lue s .
21 i = 0
22 whi le i < nn−1:
23 dH = a∗H[ i ] − b∗H[ i ]∗L [ i ]
24 dL = −c∗L [ i ] + d∗H[ i ]∗L [ i ]
25

26 H[ i +1] = H[ i ] + s s ∗dH
27 L [ i +1] = L [ i ] + s s ∗dL
28 i = i+1
29

30 # Output graphs .
31 t ex t (4 , 7 , ”H( t ) ” )
32 t ex t ( 1 5 . 1 , 6 0 , ”L( t ) ” )
33 x l a b e l ( ”Time ( years s i n c e 1900) ” )
34 y l a b e l ( ”Number o f i n d i v i d u a l s ( thousands ) ” )
35 t i t l e ( ” Modelled popu la t i ons o f hares and lynx ” )
36 p lo t ( time , H, ”b−” , l i n ew id th =3)
37 p lo t ( time , L , ”k−” , l i n ew id th =3)
38 show ( )
 	� �
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Example 12.3.6

• At time t = 0 years (corresponding to year 1900), data show that there

were 30 (thousand) hares and 4 (thousand) lynx in the monitored region.

• The program was used to model population movements over the next

20 years.

• Figure 12.8 shows the predicted movements in both population sizes

during that time.

• Figures 12.9 and 12.10 compare the predicted populations with the real

(measured) data for each population.
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Figure 12.8: Modelled populations of hare and lynx.

(continued over)
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Example 12.3.6 (continued)
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Figure 12.9: Real and modelled hare populations.
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Figure 12.10: Real and modelled lynx populations.
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Question 12.3.7

(a) Comment on the results in Example 12.3.6.

(b) Critically evaluate the following possible media statement:

A survey has shown that the populations of lynx and snow-

shoe hares are both in decline. We need to act promptly or

else one or both species will become extinct.

Photo 12.9: Three top predators. Left: polar bear, Ursus maritimus. Centre: Komodo dragon, Varanus
komodoensis. Right: Siberian tiger, Panthera tigris altaica. (Source: PA.)

End of Case Study 36.
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12.4 Space for additional notes
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Chapter 13: Fully sick

From New Delhi to Darjeeling I have done my share of healing,

and I’ve never yet been beaten or outboxed.

I remember that with one jab of my needle in the Punjab

how I cleared up beriberi and the dreaded dysentery,

but your complaint has got me really foxed.

Oh doctor, touch my fingers.

Well, goodness gracious me.

You may be very clever but however, can’t you see,

my heart beats much too much at a certain tender touch,

it goes boom boody-boom boody-boom boody-boom

boody-boom boody-boom boody-boom-boom-boom.

Artist: Peter Sellers and Sophia Loren (www.youtube.com/watch?v=gKMy15O1tCw)

Image 13.1: The Triumph of Death (1562), Pieter Bruegel the Elder (c. 1525 – 1569), Museo del Prado,
Madrid. (Source: commons.wikimedia.org.)
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13.1 Epidemics and SIR models

• In this section we discuss the use of systems of DEs to model the large-scale

spread of infectious disease through a population over time.

Epidemic

A large-scale occurrence of disease in a human population is called an epi-

demic if new cases of the disease arise at a rate that “substantially exceeds

what is expected” in a given time period. Localised occurrences are called

outbreaks, and global occurrences are often called pandemics.

• Modelling diseases is an important aid to understanding their spread, and

how their impact can be mitigated through approaches such as quarantine,

vaccination and public health campaigns.

Photo 13.1: Images commemorating the bubonic plague in Eyam, the “Plague Village”, UK. Left: stained
glass ‘Plague Window’. Centre: first page of the list of names of villagers who died from plague in 1665–6.
Right: tombstone. (Source: PA.)

• Modelling the spread of a disease often commences with estimating the

number of secondary infections typically arising from an individual with

the disease, and the rate at which individuals recover from the disease.
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Basic reproduction number

The basic reproduction number of a disease, written R0, is the aver-

age number of secondary infections caused by a single infected individual in

a completely susceptible population, in the absence of any preventive inter-

ventions. The value of R0 is determined by factors including how infectious

the disease is, how homogeneously the population mixes and the duration

of the infectious period.

Infectious period

The infectious period of a disease is the average length of time dur-

ing which an infected individual can pass the disease on to a susceptible

individual. Many diseases are infectious before symptoms are apparent.

• Figure 13.1 shows some well-known infectious diseases along with their

values of R0, transmission methods and infectious periods.

Disease Transmission method R0 Infectious period

Rubella Airborne droplet ≈ 5 14 days
Measles Airborne droplet 12− 18 10 days
Pertussis Airborne droplet 12− 17 21 days
Mumps Airborne droplet 4− 7 14 days
Swine flu Airborne droplet 1.4− 1.6 6 days
Seasonal influenza Airborne droplet 2− 3 6 days
Smallpox Social contact 5− 7 20 days
HIV/AIDS Sexual contact 2− 5 unlimited
Syphilis Sexual contact ≈ 1.5 up to 2 years
Human papillomavirus Sexual contact 1− 3 very variable
Pneumonic plague Airborne droplet ≈ 1.3 2 days (100% death rate)

Figure 13.1: Some infectious diseases along with their basic reproduction numbers and infectious periods.

• When modelling disease spread, it is useful to define the following two

additional concepts:

– the infection rate, which equals the basic reproduction number di-

vided by the infectious period; and
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– the recovery rate, which equals 1 divided by the infectious period.

• For example, the infection rate for rubella is 5/2, which equals 2.5 per

week, and the recovery rate is 0.5 per week.

• These concepts make sense: a person infected with rubella will typically

be ill for two weeks, and will infect five additional people during that time.

Hence the individual infects 2.5 people per week, and each week “half

recovers”.

• Researchers, governments and the medical community use a variety of mod-

els when studying epidemics.

• We will commence our study of epidemics with a simple model, known as

the SIR (Susceptible, Infected, Removed) model.

• The SIR model is used to model many diseases, including rubella, measles,

cholera, swine flu and bubonic plague.

SIR model of epidemics

The SIR epidemic model classifies a population into three distinct com-

partments or groups. At any time t:

(1) The susceptible compartment S(t) is the group of people who are

susceptible to the disease.

(2) The infective compartment I(t) is the group of people who have the

disease and can infect susceptible people.

(3) The removed compartment R(t) is the group of people who cannot

catch the disease, either because they have permanently recovered, are

naturally immune, or have already died from the disease.

The SIR model uses a system of DEs to model the changes in the number

of people in each compartment over time.
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• The SIR model assumes that:

– a susceptible person can become infected;

– an infected person can become removed;

– there are are no births, or deaths from other causes, so the population

size is constant (apart from disease-related deaths);

– the population mixes homogeneously, so susceptible, infected and re-

moved individuals mix equally.

Question 13.1.1

Draw a “life-cycle diagram” for the SIR model.

Photo 13.2: Night view of New Podgorski cemetery, Krakow, Poland, on All Saints’ Day. (Source: PA.)
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The equations for the SIR model

If a population of N people at time t is divided into three compartments,

susceptible S(t), infected I(t) and removed R(t), then the SIR model states:

S ′ = − a
N
SI

I ′ =
a

N
SI − bI

R′ = b I

where a is the infection rate and b is the recovery rate.

Question 13.1.2

Explain what each of the terms in each of the SIR equations represents.

348



§13.1. EPIDEMICS AND SIR MODELS

• Note that the SIR equations maintain the same total population size N at

all times, because the rates at which people move between compartments

always balance.

• An epidemic occurs if introducing a group of infected people into a popu-

lation causes an increase in the number of infectives in the population.

• The SIR model predicts that an epidemic will occur if at t = 0, I ′ > 0

(that is, the number of infectives is increasing).

• Simple algebra shows that I ′ > 0 at time 0 if the fraction of the total

population that is susceptible is more than b/a.

• (This is identical to saying that the proportion of susceptibles in the pop-

ulation is more than 1/R0, where R0 is the basic reproduction number.)

Question 13.1.3

Explain intuitively why an epidemic will occur if a fraction of more than

1/R0 of a population is susceptible.

Question 13.1.4

What is the purpose of mass public vaccination?

349



§13.1. EPIDEMICS AND SIR MODELS

• Some people are opposed to vaccinations, claiming either that there are no

benefits, or that the risks outweigh any benefits.

• However, each time someone remains unvaccinated, there is an increase in

the number of susceptibles in the population, resulting in an increased risk

of an epidemic occurring. This in turn increases the risk to all susceptibles,

including those who are unvaccinated for unavoidable reasons, including

migrants, babies, or people with health problems that preclude vaccination.

Example 13.1.5

In 1998, a paper published in the Lancet, with primary author Dr Andrew

Wakefield, found a link between the MMR (Measles, Mumps and Rubella)

vaccine and autism in children. The findings had a large impact on the

public perception of the vaccination. As a result, more than 3 million young

people in the UK were not fully vaccinated.

In recent years, the study linking MMR vaccines with autism has been com-

pletely discredited. In fact, Wakefield was found to have committed scientific

fraud by falsifying data, to have acted dishonestly and irresponsibly, and to

have a conflict of interest. A number of his research papers were retracted

by the journals that had previously published them, and in 2010 he was

struck off the UK medical register.

From 1996 to 2005 there was a total of 1621 confirmed cases of measles in

England and Wales. In 2006 and 2007 there were more than 1700 confirmed

cases. Around 95% of the population need to be vaccinated to protect

against a measles epidemic, but the rate in England and Wales is around

85%. In 2008, the UK government launched a campaign to raise MMR

vaccination rates.

Example 13.1.6

In early 2011, Queensland Health issued a measles warning after an infected

man came into contact with people at a Brisbane shopping centre.
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• The SIR model can also be applied when some individuals have been vac-

cinated against a disease, so are not susceptible.

• Vaccinated people are placed in the removed compartment at time 0, rather

than in the susceptible compartment.

• We can then use the model to investigate the impact of different vaccination

rates on the potential spread of disease.

Question 13.1.7

The SIR model predicts that an epidemic will occur whenever the proportion

of susceptibles in a population is greater than b/a, where b is the recovery

rate and a is the infection rate. Suggest some strategies that might be used

to prevent an epidemic or reduce its severity or duration, and explain how

each strategy impacts on the values of b, a and b/a.
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Case Study 37:

Rubella

• Rubella (or German measles) was (and in some countries, still is) a

common disease, particularly in childhood.

• In most cases, symptoms are very mild, and may even pass unnoticed.

However, if a woman is infected during the first 20 weeks of pregnancy

then spontaneous abortion can occur (in about 20% of cases), or the child

may be born with congenital rubella syndrome (CRS), which is a range of

incurable conditions including deafness, blindness and mental retardation.

• There was a rubella epidemic in the USA between 1962 and 1965. Health

authorities estimate that there were well over 10 million infections, leading

to 30,000 still births and 20,000 children born with CRS.

• A rubella vaccine was introduced in 1969 and is routinely administered in

many countries. In Queensland, the Department of Health recommends all

children have combined MMR (measles, mumps and rubella) vaccines at

the ages of 12 months and 4 years.

• Vaccination campaigns have greatly reduced the incidence of rubella and

the frequency of outbreaks. The Centers for Disease Control and Preven-

tion announced that rubella was eliminated from the USA in 2004.

• In January 2008, at least four babies in Sydney became infected with

rubella. All were less than 12 months old, so were under the age for ad-

ministering the MMR vaccine.

• Earlier, we saw that for rubella:

the infection rate a = 2.5 week−1; and

the recovery rate b = 0.5 week−1.

• The fraction b/a = 0.5/2.5 = 0.2. (Alternately, 1/R0 = 1/5 = 0.2.)

Hence if more than 20% of a population is susceptible to rubella and infec-

tives enter the population then an epidemic is expected to occur.
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Example 13.1.8

Assume that a population of 10000 people contains 10 rubella infectives, and

that everyone else is susceptible. Using the values of a and b from above,

the SIR equations for rubella are:

S ′ = − 2.5

10000
SI

I ′ =
2.5

10000
SI − 0.5I

R′ = 0.5I

where I(0) = 10, S(0) = 9990 and R(0) = 0.

Question 13.1.9

Use Euler’s method and a stepsize of one week to estimate the number of

people in each category after one week.

Now we can develop a computer model.

Program specifications: Write a Python program that uses Euler’s method

and the SIR model to predict the spread of rubella when 10 infectives are in a

population of 10000 people, with vaccination proportions between 0 and 1.
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Program 13.1: SIR model of rubella.� �� �
1 # Uses Euler ’ s method and the SIR equat ions to model the spread o f r u b e l l a
2 # in a populat ion with a vacc ina t i on proport ion between 0 and 1 .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5

6 # Input parameters f o r the model .
7 maxt = input ( ”Over how many weeks should the model run? ” )
8 vacc = input ( ” Enter propor t ion vacc inated ( 0 . . 1 ) : ” )
9

10 # I n i t i a l i s e v a r i a b l e s f o r r u b e l l a ; va lue s o f a and b are per week .
11 N = 10000
12 a = 2 .5
13 b = 0 .5
14

15 # I n i t i a l i s e v a r i a b l e s f o r Euler ’ s method . The s t e p s i z e i s 0 . 1 week .
16 s s = 0 .1
17 time=arange (0 , maxt+0.1 , s s )
18 nn=s i z e ( time )
19 SA = ze ro s (nn)
20 IA = ze ro s (nn)
21 RA = ze ro s (nn)
22

23 # Set the i n i t i a l number o f people in each category .
24 IA [ 0 ] = 10
25 SA [ 0 ] = N ∗ ( 1 . 0 − vacc ) − IA [ 0 ]
26 RA[ 0 ] = N − SA [ 0 ] − IA [ 0 ]
27

28 # Step through Euler ’ s method with s t e p s i z e s s .
29 i = 0
30 whi le i < nn−1:
31 dS = −a ∗ SA[ i ] ∗ IA [ i ] /N
32 dI = a ∗ SA[ i ] ∗ IA [ i ] /N − b ∗ IA [ i ]
33 dR = b ∗ IA [ i ]
34 SA[ i +1] = SA[ i ] + s s ∗dS
35 IA [ i +1] = IA [ i ] + s s ∗dI
36 RA[ i +1] = RA[ i ] + s s ∗dR
37 i = i+1
38

39 # Output
40 x l a b e l ( ”Time ( days ) ” )
41 y l a b e l ( ”Number o f people ” )
42 t i t l e ( ”SIR model o f r u b e l l a ” )
43 p lo t ( time , SA, ”b−” , l i n ew id th =3)
44 p lo t ( time , IA , ”k−” , l i n ew id th =3)
45 p lo t ( time , RA, ”r−” , l i n ew id th =3)
46 t ex t ( 3 . 5 , 8000 , ”S( t ) ” )
47 t ex t ( 7 . 4 , 2000 , ” I ( t ) ” )
48 t ex t ( 6 . 3 , 6000 , ”R( t ) ” )
49 show ( )
 	� �
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Example 13.1.10

Figure 13.2 shows the output from the Python program using a period of

14 weeks, and with no vaccinations.
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Figure 13.2: A rubella epidemic, as modelled by Euler’s method, showing the numbers of susceptibles
S(t), infectives I(t) and removed people R(t).

Figure 13.2 shows that:

• An epidemic occurs. (This is expected, as the initial proportion of

susceptibles is more than 0.2).

• The epidemic lasts for about 14 weeks.

• The peak number of infectives at any time is 4925, which occurs about

4.4 weeks after the infectives entered the population.

• Almost everybody becomes infected over time, although a small number

never become infected.
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Example 13.1.11

Consider a population of 10000 people with 10 infectives. The graphs in

Figure 13.3 show the predicted values of S(t), I(t) and R(t) for two different

vaccination rates.
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Figure 13.3: Models of rubella with 30% vaccination (left; over 16 weeks) and 70% (right; 30 weeks).

Question 13.1.12

Describe the key differences between the predicted rubella outbreaks with

vaccination rates of 0% (Example 13.1.10), 30% and 70% (Example 13.1.11).

What are some practical benefits of achieving high vaccination rates?
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Now we can develop a computer model of the impact od different vaccination

rates on a (possible) rubella epidemic.

Program specifications: Write a Python program that uses Euler’s method

and the SIR model to predict ossible rubella epidemics, with vaccination rates

ranging from 0% to 80%.

Program 13.2: Impact of vaccinations on rubella epidemics.� �� �
1 # Uses Euler ’ s method and the SIR equat ions to model the spread o f r u b e l l a
2 # in popu la t i ons with a range o f vacc ina t i on r a t e s . Pr in t s out in fo rmat ion
3 # about the vacc ina t i on r a t e s and the r e s u l t i n g spread o f d i s e a s e .
4 from f u t u r e import d i v i s i o n
5 from pylab import ∗
6

7 # I n i t i a l i s e v a r i a b l e s . Run the model f o r a ” long ” time with s t e p s i z e 0 . 1 .
8 N = 10000
9 a = 2 .5

10 b = 0 .5
11 maxt = 200
12 s s = 0 .1
13

14 # Choose d i f f e r e n t vacc ina t i on r a t e s from 0 to 0 . 8 .
15 vacc = 0
16 whi le vacc <= 0 . 8 :
17 # Set the i n i t i a l number o f people in each category .
18 I = 10
19 S = N ∗ ( 1 . 0 − vacc ) − I
20 R = N − S − I
21 R0 = R
22 Ipeak = 0
23 # Step through Euler ’ s method with s t e p s i z e s s .
24 t = 0
25 whi le t < maxt :
26 dS = −a ∗ S ∗ I /N
27 dI = a ∗ S ∗ I /N − b ∗ I
28 dR = b ∗ I
29 S = S + ss ∗dS
30 I = I + s s ∗dI
31 R = R + ss ∗dR
32 i f I > Ipeak :
33 Ipeak = I
34 tpeak = t
35 t = t + s s
36

37 # Print output f o r t h i s vacc ina t i on ra t e .
38 pr in t vacc , round ( Ipeak ) , round ( tpeak , 1 ) , round(10000−R0−S) , round (S)
39 vacc = vacc + 0 .1
 	� �
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Example 13.1.13

Figure 13.4 presents some output from the program. In the figure, V is

the percentage of the population vaccinated, Ipeak is the peak number of

infectives at any time, tpeak is the time at which this occurs, Itot is the total

number who ever become infected, and Sfinal is the number of susceptible

people who never become infected.

V Ipeak tpeak Itot Sfinal

(%) (people) (weeks) (people) (people)

0 4925 4.4 9944 56
30 2554 6.2 6781 219
40 1841 7.3 5662 338
50 1190 8.9 4481 519
60 626 11.7 3202 798
70 197 17.8 1764 1236
80 10 0 194 1806

Figure 13.4: Predicted impact of different vaccination rates on a rubella outbreak.

Figure 13.4 shows that, as expected, epidemics of varying severity occur

until the vaccination rate reaches 80%. Figure 13.5 shows the peak and

total numbers of infectives for a range of vaccination rates.
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Figure 13.5: Peak and total numbers of rubella infectives for various vaccination rates.

End of Case Study 37.
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13.2 Catastrophes

Photo 13.3: Bones of plague victims (and others). Left: Sedlec ossuary, Kutna Hora, Czech Republic.
Right: Capela dos Ossos, Evora, Portugal. (Source: PA.)

• Many governments conduct catastrophe planning, modelling potential im-

pacts of disastrous events, such as nuclear explosions, terrorist strikes,

tsunamis, earthquakes and pandemics. Much of this work is highly se-

cret, partly for security reasons, but also because some of the predicted

outcomes are too frightening for public release.

• History contains many severe pandemics. In 2009, the Australian govern-

ment spent $200 million responding to the (very mild) swine flu pandemic.

Example 13.2.1

In terms of numbers of fatalities, three of the four worst catastrophes in

(European) Australian history are diseases. These four events are:

• Spanish influenza in 1918−19, causing more than 12000 deaths;

• a polio epidemic in 1946−55, causing more than 1000 deaths;

• a naval battle in the Second World War, causing 727 deaths; and

• a bubonic plague epidemic in 1900−1910, causing 550 deaths.

In addition, thousands of indigenous Australians died from diseases intro-

duced by European settlement.
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Example 13.2.2

In the 1300s, the bubonic plague or Black Death killed around 20 million

Europeans in six years, which was about one third of the population. In

the worst-affected urban areas, around half of the population died.

The plague returned regularly over the next 400 years, with around 100

epidemics occurring. The social, economic, humanitarian and psychologi-

cal costs and disruption arising from these pandemics are incalculable, and

unimaginable today.

Photo 13.4: Plague monuments. Left: Brno, Czech Republic. Centre: Vienna, Austria. Right: Plzen,
Czech Republic. (Source: PA.)

Example 13.2.3

A Spanish Flu pandemic occurred in 1918–1919. Within six months the

death toll was 25 million, statistical life expectancy in the USA dropped by

10 years and it is generally accepted that more people died from the disease

than from combat in the First World War. The flu was so virulent and

deadly that it ‘burnt itself out’, disappearing completely within 18 months.

The following is a quote from a letter written by Professor N R Grist in a

camp infected by the disease, 29 September 1918.

“These men start with what appears to be an ordinary attack of LaGrippe

(continued over)
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§13.2. CATASTROPHES Case Study 38: Avian influenza

Example 13.2.3 (continued)

or Influenza, and when brought to the Hosp. they very rapidly develop the

most viscous type of Pneumonia that has ever been seen. Two hours after

admission they have the Mahogany spots over the cheek bones, and a few

hours later you can begin to see the Cyanosis extending from their ears and

spreading all over the face, until it is hard to distinguish the coloured men

from the white. It is only a matter of a few hours then until death comes,

and it is simply a struggle for air until they suffocate. It is horrible. One

can stand it to see one, two or twenty men die, but to see these poor devils

dropping like flies sort of gets on your nerves. We have been averaging about

100 deaths per day, and still keeping it up. There is no doubt in my mind

that there is a new mixed infection here, but what I don’t know. My total

time is taken up hunting Rales, rales dry or moist, sibilant or crepitant or

any other of the hundred things that one may find in the chest, they all

mean but one thing here – Pneumonia – and that means in about all cases

death.

. . . It takes special trains to carry away the dead. For several days there were

no coffins and the bodies piled up something fierce, we used to go down to

the morgue (which is just back of my ward) and look at the boys laid out

in long rows. It beats any sight they ever had in France after a battle. . . ”

Photo 13.5: Snow sculpture of Death, Harbin, China. (Source: PA.)
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§13.2. CATASTROPHES Case Study 38: Avian influenza

Case Study 38:

Avian influenza

• The World Health Organisation (WHO) has warned that:

– the risk of an influenza pandemic is high;

– H5N1 (avian) influenza is endemic in many bird populations;

– bird-to-human transmission has already caused fatalities; and

– there is a serious risk that the virus could mutate and become human-

to-human transmissible. This is sometimes called a “nightmare sce-

nario” (although there has not yet been a verified case of this occur-

ring).

• A major focus of international catastrophe planning is identifying and plan-

ning actions that can be taken in order to minimise the impact of a pan-

demic.

Photo 13.6: Feathered fiends? (Source: PA.)

• We will use the SIRD model to investigate the potential impact of a catas-

trophe caused by human-transmissible avian influenza. The SIRD model

classifies the population into four distinct compartments: Susceptible,

S(t); Infected, I(t); Recovered, R(t); and Dead, D(t).

• The only possible movements of people between compartments are:

– a susceptible person can become infected; and

– an infected person can either recover or die.
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§13.2. CATASTROPHES Case Study 38: Avian influenza

Question 13.2.4

Draw a “life-cycle diagram” for the SIRD model.

Photo 13.7: Ring-necked pheasants, Phasianus
colchicus, China. (Source: PA.)

Photo 13.8: Painted Desert National Park, USA.
(Source: PA.)

• Because there has never been a verified case of human-to-human trans-

mission of avian influenza, the model is hypothetical. When building such

models, it is important to choose reasonable values for all parameters.

• Researchers estimate the following values for the Spanish Flu pandemic in

1918−1919. We will use these values in our catastrophe model.

a = infection rate b = recovery rate c = mortality rate

= 1.9 week−1; = 1.4 week−1; = 0.065 week−1.

Photo 13.9: Spanish bird: nativity facade, Sagrada Famı̀lia, Barcelona, Spain. (Source: PA.)
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§13.2. CATASTROPHES Case Study 38: Avian influenza

Example 13.2.5

The equations of the SIRD catastrophe model are:

S ′ = −a S

(N −D)
I

I ′ = a
S

(N −D)
I − (c + b) I

R′ = b I

D′ = c I

where N is the total initial population size, so N = S + I + R + D.

Question 13.2.6

In the SIRD model, the equations for S ′ and I ′ include the ratio S/(N−D).

In the SIR model, the ratio was S/N . Explain why the ratios are different.

Photo 13.10: Left: Plague monument, Plzen, Czech Republic. Right: ring of pestilence? (Source: PA.)

• Now we can use Euler’s method and our model to investigate various sce-

narios in a city such as Brisbane with N = 106.
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§13.2. CATASTROPHES Case Study 38: Avian influenza

Example 13.2.7

An infective enters a city in which N = 106 and everyone is susceptible.

Results: The results are shown in Figure 13.6. The model predicts that

the disease outbreak will last for about 45 weeks, around 435,000 people will

become ill, the largest number of infected people at any time will be about

29,800, and that approximately 19,200 people will die.
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Figure 13.6: The impact of a possible human-transmissible avian influenza epidemic on a city of one
million people, as modelled by Euler’s method.

Photo 13.11: Marabou Stork, Leptoptilos crumeniferus. (Source: PA.)

• Of course, this catastrophe model is speculative. Is it realistic?
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• For comparison, Figure 13.7 shows some mortality rates during the Spanish

flu pandemic. The graphs are of similar shape to those in our catastrophe

model.

Figure 13.7: Mortality rates (per thousand population) for the Spanish flu in several cities in 1918−1919.

• Our catastrophe model predicts an overall infection rate of 45% and a

mortality rate of 4.2% of infected people.

• For the Spanish flu, infection rates reached around 50%, with mortality

rates ranging from 2% to 5%.

• Comparison of both scenarios shows that the catastrophe model that we

have presented is (at least) plausible.

• Perhaps we all should be very, very afraid? At least, stop kissing poultry!

End of Case Study 38.
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§13.3. SPACE FOR ADDITIONAL NOTES

13.3 Space for additional notes
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Appendix A: Python laboratory manual

A.1 Introduction to Python

A.1.1 Using this manual

The purpose of this chapter of the notes is to help you learn how to use Python

to represent models and answer questions in science. These notes are designed

to be used in conjunction with your weekly computer lab sheets. Each week

you will be told when to read which sections of these Python notes. In this

way, you will be reading the material in these notes, then doing lab activities

to reinforce your learning.

If you are keen to learn Python more rapidly, feel free to read ahead in these

notes. The best way to learn computer skills is often to play around. Try things

out, see what you can do, and challenge yourself!

A.1.2 Installing Python at home

You may want to install Python at home so that you can try out some of this

exciting stuff on your own. You can download the installation files from the

course website, which also gives some instructions on what to do. To complete

all the activities we will be doing in this course, you will need to install Python,

NumPy and matplotlib (in that order).

For more information about Python, see http://www.python.org/.

If you would like to find out more about the packages we are using, or to find

installations for MacOS or linux, the following links might also be useful:

• ActivePython is the distribution of Python which we will be using in

this course. For more information see http://www.activestate.com/

Products/activepython/.

• NumPy provides mathematical tools for Python, and is needed to use

matplotlib. See http://numpy.scipy.org/.

• matplotlib provides graphing capabilities for Python, and can be found

at http://matplotlib.sourceforge.net/.
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A.1.3 Getting started

In this course we will be using Python through a program called IDLE, which

is an Integrated Development Environment (IDE) for Python. An IDE typi-

cally consists of an editor (which often uses colours to highlight features of the

language) and other tools to aid in software development and maintenance.

Opening IDLE

To open IDLE, go to the Start Menu and choose:

Programs → ActiveState ActivePython 2.5 → idle.

If you need to do something different from this in order to start IDLE, your

tutor will give you instructions.

The screen in IDLE will probably look something like Image A.1, although

there may be some variations, depending on which version of Python you are

running. This window is the main Python window. All output from your

program and any error messages will appear in this screen. (You can also type

Python commands directly into this window, but we will not usually do that

in SCIE1000.)

Image A.1: The IDLE window.
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A.2 Basic use of Python

We will be writing and running Python programs throughout semester. In

this section we first describe in general what a program is, how to write and

save programs, and how to run programs. Then we will cover some Python

commands that can be included in your programs.

A.2.1 Programming

What is a program?

A program is simply a set of instructions which a computer is able to interpret

and carry out. You may be familiar with programs such as Firefox or Microsoft

Word. Even the Python programming language is itself a program.

When we have a problem to solve computationally, we usually want to write a

sequence of Python commands, save them to a file, and then run them.

Advantages of doing this include:

• Programs can be run multiple times, and in multiple places.

• Programs can be debugged more easily. For example, once a section of a

program has been thoroughly checked (or even proved to be correct) then

it does not need to be checked again.

• Teams of people can design and write different parts of the program.

• Problems of much greater complexity can be solved.

Writing and saving programs

To create and save a program:

• In IDLE’s “Python Shell” window, select File → New Window. This

will open a new window, called an editor window, in which you can enter

your code.

• Type in the Python commands that you want in your program. When you

type the commands, they will not run straight away. This allows you to

enter multiple lines, and go back to fix any errors you make before you run

the program.
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– Do not include any spaces or tabs at the start of your lines; we will see

why later.

• When you have finished choose File → Save As in the editor window.

You may like to save your program in a special Python programming folder

(which you will need to create the first time you want to use it).

To open an existing program, select File → Open and choose the file.

Naming your programs

Python programs are conventionally named

something.py

where something is a name that explains the purpose of the program. The

.py extension is well-recognised for Python programs.

Running a program

To run a program that is in an editor window, select Run → Run Module

from that editor window. This will load your commands into the main Python

window and run them, as if you had typed them directly into the window. (If

you have changed the program since you last saved it, you will be prompted to

save it again.)

When you run your program, you will notice that the Python window shows

the following message:

>>> ================ RESTART ================

This tells you that Python is clearing the values of any variables you have pre-

viously created. This means that earlier calculations do not interfere with your

current work, but also that you cannot use values from previous calculations.

Any output from your program will appear under that message.
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A.2.2 Comments in Python programs

Any lines in a Python program that starts with a # are comments, and will be

ignored by Python. You should use comments to explain what your program

is doing, which will help anyone reading your program to understand what is

happening. Always try to use comments where appropriate.

A.2.3 Importing modules

Like most computer languages, Python provides access to a large collection

of mathematical functions and other useful operations. These functions are

organised into modules. in SCIE1000 we will be using the mathematical func-

tions defined in the module called pylab. This module contains many useful

functions, and we will be using it all of the time.

To instruct Python to allow us to access all of the functions defined in the pylab

module (as well as to avoid some odd behaviour when dividing integers), use

the following commands (which should appear at the top of all of your Python

programs):

from __future__ import division

from pylab import *

A.2.4 Printing to the screen

The next Python command we will see is the print command, which outputs

text and the results of calculations to the screen.

Printing text

To print something to the computer screen, use the print command.

The print command may be used in a number of ways. If you want to print

a blank line to the screen, use:

print

To print a message to the screen, use:

print "message"
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The message must be enclosed in quotation marks. You may use either single

quotes ’like this’, or double quotes "like this". You may not mix the

two. These two symbols occur on the same key of your keyboard.

Note that if you open quotation marks in a command, you must close them.

If you try to enter a command without closing your quotation, the command

will not be complete. Python will open a new blank line and will not run the

command until you close the quotation and then press enter.

To evaluate a mathematical expression and print the answer, use:

print expression

Note that there are no quotation marks in this case. If you use quotation marks,

whatever is within the quotation marks will be printed exactly as it is, whereas

anything that is not inside quotation marks will be evaluated as an expression,

and the answer will be printed. Note that if you open quotation marks in a

command, you must close them. If you want to print multiple items (this

may include a mixture of expressions and messages), you can separate the items

by commas.

The following example is a simple Python program that demonstrates these

uses of the print command. Note that the line numbers and vertical line at

the left have been added into these notes for ease of reference. They are not a

part of the program. (If you like, you can type this program into a Python edit

window, then save it and run it. Take care to type the brackets and quotation

marks exactly as they appear.)
Program A.1: My first program� �� �

1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 # Print some messages .
5 pr in t ” This i s a message”
6 pr in t ” This i s a l s o a message ! ”
7 pr in t ” This i s f i r s t ” , ”and t h i s i s second ”
8

9 # Print the r e s u l t o f a c a l c u l a t i o n .
10 pr in t 3+4
 	� �

Here is the output from running the program:
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� �� �
1 This i s a message
2 This i s a l s o a message !
3 This i s f i r s t and t h i s i s second
4 7
 	� �

Note that Lines 4 and 9 of the program contain comments. Also, you can use

blank lines (like Lines 3 and 8) to make your program more readable.

A.2.5 Numerical calculations

As suggested by Line 10 of the previous program, Python can use standard

mathematical operations. The following table summarises the Python symbols

for a number of these operations. (In each case, the letters a and b represent

numbers.)

Operation Mathematical representation Python spelling

Addition a + b a+b

Subtraction a− b a-b

Multiplication a× b a*b

Division a÷ b a/b

Exponentiation ab a**b

Brackets (...) (...)

Remainder a mod b a % b

Important note

You may have seen a^b used to represent ab on your calculator. In Python

a^b means something completely different so be careful to use a**b.

The following example is a simple Python program that demonstrates some

mathematical operations.
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Program A.2: Python as a calculator

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 pr in t 12/4
5 pr in t −6∗4
6 pr in t 10%6
7 pr in t 10%5
8

9 # Python c o r r e c t l y a p p l i e s order o f ope ra t i on s :
10 pr in t 2+3∗4
11 pr in t (2+3)∗4
12 pr in t 2∗∗5
13

14 # You can combine text and c a l c u l a t i o n s in p r i n t commands .
15 pr in t ” Al l up , 10 cows have” ,10∗4 , ” l e g s ”
 	� �

Here is the output from running the program:� �� �
1 3
2 −24
3 4
4 0
5 14
6 20
7 32
8 Al l up , 10 cows have 40 l e g s
 	� �

Permission to experiment and play

Important: Do not be afraid of experimenting and trying something new.

If you type something into Python and it does not work, you will not destroy

modern civilisation. You will not even crash the computer.

In the examples above, none of the expressions which we typed contained spaces.

In Python, you can add spaces into an expression anywhere you like, provided

that the expression still makes sense. Adding spaces to your expressions in sen-

sible places can make them easier to read and understand, particularly when

you start to write more complicated expressions. The following example demon-

375



strates writing expressions with sensible spacing.

Program A.3: Spacing� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 # Adding one space between numbers and symbols i s r ea sonab l e .
5 pr in t 6 + 4
6

7 # You normally do not use space between bracket s and numbers .
8 pr in t (2 + 3) ∗ (6 − 4)
9

10 # Sometimes spaces are used to show order o f ope ra t i on s .
11 pr in t 2 + 3∗4 + 5∗6
 	� �

When putting spaces into your expressions, remember that your main concern

is communication. There is no one correct answer. Use your judgment.

A.2.6 Integers and real numbers

Internally, computers store values in binary. That is, they use 1s and 0s to

represent them. Depending on the kind of value, computers may represent

values in different ways.

• integers can be represented exactly in binary.

• real numbers usually cannot be exactly represented using binary. In-

stead, the computer stores a very close approximation to the number. The

term floating point number refers to a number which is not stored as an

exact integer, but is stored as a real number instead.

Because computers cannot always store real numbers exactly, calculations can

sometimes result in numbers which are not exactly what you expect. The errors

are usually so small that they can be ignored.

Python uses the symbol e to represent scientific notation. So for instance,

Python would represent 6.02× 1023 as 6.02e+023, and 3× 10−4 as 3e-04.

Most programming languages can only store integers in a certain range. Python

has the added feature that it can store arbitrarily large integers. Python shows
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that a number is stored in large integer format by appending the letter L to the

number.

A.3 Variables and mathematical functions

A.3.1 Variables

A powerful feature of computers and programming languages is their ability to

“remember” values. This is done by assigning values to variables.

Variable names

Every variables has a name, which is used to access it. A variable name:

• is made up of one or more letters, digits and underscores.

• must begin with a letter or an underscore.

• is case sensitive. For example, sideLen, SideLen and SIDELEN are all

different variables.

When writing programs, always remember that someone else may need to read

your program later. You should always choose meaningful variable names

which tell the reader what the variables are used for.

Assigning to variables

To assign a value to a variable use the command

variable = expression

where variable is the name of the variable, and expression is either a

value (such as 3 or -2.25), or an expression (such as 2 + 4). If you use an

expression, Python will calculate the result of the expression and assign that

value to the variable.

Once you have assigned a value to a variable, you can use that variable name

in subsequent calculations. You can even assign its value to another variable.
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Accessing variables

Once a variable has been created, it is accessed using its name. So, to print the

value of a variable named bob to the screen you can use the command:

print bob

Remember that if you were to write print "bob" (notice the quotes), then

Python would print the word “bob” to the screen. Because the command above

does not use quotes, Python accesses the variable named bob.

You can also use variable names in calculations. For example:

Program A.4: Using variables

� �� �
1 width = 20
2 he ight = 45
3 pr in t width , he ight
4 pr in t width ∗ he ight
5 per imeter = 2 ∗ width + 2 ∗ he ight
6 pr in t ”The per imeter i s ” , per imeter
 	� �

Here is the output from running the program:� �� �
1 20 45
2 900
3 The per imeter i s 130
 	� �If you try to access a variable that does not yet have a value, you will get an

error message.

A.3.2 Functions and parameters

As in mathematics, many Python functions act on one or more values (called

arguments), and produce some output.

Arguments (also known as parameters) are values that are passed in to a

function. An argument can be a variable, a value or a mathematical expression.

To use a Python function to calculate the result of a mathematical function,

type

functionName(argument)

where functionName is the name Python gives to the function and argument

is the argument to the function. For example:
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Program A.5: Python functions

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3 B = 9
4 SqB = s q r t (B)
5 pr in t ”The square root o f ” ,B, ” i s ” ,SqB
6 pr in t ”The square root o f 64 i s ” , s q r t (64)
 	� �

Here is the output from running the program:� �� �
1 The square root o f 9 i s 3
2 The square root o f 64 i s 8
 	� �
Common mathematical functions

Here is a list of some mathematical functions in Python. In this list, ...

represents an argument.

• sqrt(...) which gives the square root of the argument.

• sin(...) which gives the sine of the argument (where the argument is

given in radians).

• cos(...) gives the cosine of the argument (where the argument is in

radians).

• tan(...) gives the tangent of the argument (where the argument is in

radians).

• exp(...) gives e raised to the given power.

• log(...) gives ln of the given argument.

• log10(...) gives log10 of the given argument.

Python also includes the constant pi, which (approximately) equals π.

All of the trigonometric functions in Python operate on angles measured in

radians. Any angles measured in degrees must first be converted to radians, by

multiplying the angle by 2π and dividing by 360 (or, equivalently, multiplying

by π and dividing by 180).

The following example demonstrates the use of mathematical functions.
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Program A.6: Mathematical functions in Python

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3 # Access the constant p i
4 pr in t p i
5

6 pr in t s i n ( p i /2)
7 pr in t exp (1)
8 pr in t log10 (1000)
9 # Evaluate s i n o f 90 degree s . We f i r s t need to convert degree s

to rad ians .
10 pr in t s i n (90∗ pi /180)
11 pr in t ”45 degree s = ” , 45∗ pi /180 , ” rad ians ”
 	� �

Here is the output from running the program:� �� �
1 3.1415926535897931
2 1 .0
3 2.71828182846
4 3 .0
5 1 .0
6 45 degree s = 0.785398163397 rad ians
 	� �
A.3.3 The input command

Often when writing programs it is useful to be able to ask the user for some

input values. To do this, we use the input command. In Python, input acts

in a similar way to other functions. There are two ways to use it:

To read a value from the user and store that value into the variable var, use

the command

var = input()

When reading a value from the user, you can instruct Python to write some

message to the screen as a prompt. Suppose that the message prompt you wish

to write to the screen is prompt. To do this you would use the command

var = input("prompt")

The command above will write the prompt to the screen, then input a value

and store it in the variable var.

The following example program shows how to use the input command.
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Program A.7: Inputting values into Python programs

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 a = input ( ” Te l l me a number : ” )
5 b = input ( ” Te l l me another number : ” )
6

7 c = a + b
8 d = a ∗ b
9

10 pr in t a , ”+” , b , ”=” , c
11 pr in t a , ”x” , b , ”=” , d
 	� �

Here is the output from running the program twice:� �� �
1 >>>
2 Te l l me a number : 8
3 Te l l me another number : 7
4 8 + 7 = 15
5 8 x 7 = 56
6

7 >>>
8 Te l l me a number : 987
9 Te l l me another number : 654

10 987 + 654 = 1641
11 987 x 654 = 645498
 	� �

A.3.4 Software errors and bugs

Even the best computer programmers will sometimes (even often) make errors

or bugs in their programs. A key skill in programming is minimising the number

of errors, and then identifying and fixing any that occur. There are many

different types of error, including incomplete problem description, design faults

in the software, unanticipated ‘special cases’, coding errors and logic errors.

In SCIE1000 the result of any errors will be minor. You will probably get a

bit frustrated and might even need to ask for help, but no lasting damage will

occur. In real life, the consequences arising from programming errors can be

very serious: for example, they have caused planes to crash, rockets to explode

and entire transport systems to fail. As a result, there is an entire branch of
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computer science devoted to techniques for minimising errors, and even proving

that software is correct.

In SCIE1000 we will not be giving you control of aeroplanes, rockets or entire

transport systems. If your program has an error, you should learn from it and

try to fix the problem. You probably will not have killed anyone important.

Avoiding errors

When writing programs, make sure that you:

• Make sure you understand the question before you start programming.

• Think about the best and most logical way to solve the problem.

• Consider planning your program on paper first.

• Put comments in your program so you know what you are trying to do.

• Test your programs on a range of data;

• Check some output carefully to make sure it is correct; and

• Pay attention to any error messages!

A Python error message is shown in the following example:� �� �
1 Traceback ( most r e c en t c a l l l a s t ) :
2 F i l e ”<p y s h e l l#243>” , l i n e 1 , in <module>
3 2/0
4 ZeroDiv i s i onErro r : i n t e g e r d i v i s i o n or modulo by zero
 	� �The Python error message may be a bit confusing, but on Line 4 it clearly

identifies the kind of error (in this case, trying to divide by zero). In general,

the last line of a Python error message will tell you what kind of error occurred.

This will help you to diagnose the problem.

Fear not!

Do not be afraid of error messages! Never let the fear of error messages

stop you from playing around with Python and trying different commands.

(continued over)
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Fear not! (continued)

Getting an error message does not mean that you will fail the course.

If it helps you to figure out what you did wrong, then you have learned

something!

Equally important, do not ignore error messages. They give you useful

advice about what is going wrong.

A common error message is:

SyntaxError: invalid syntax

This message means that Python cannot make sense of your instruction. This

might be because you have forgotten a bracket or accidentally used a symbol

which does not mean anything in Python.

A.3.5 What did I do wrong?

Previously we found out how to use a Python error message to find out what

kind of error occurred. Now we will look at how we can work out where in

your program an error occurred.

Program A.8: Errors in Python programs

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 a = input ( ” Te l l me a number : ” )
5 b = input ( ” Te l l me another number : ” )
6

7 c = a + b
8 d = a ∗ bb
9

10 pr in t a , ”+” , b , ”=” , c
11 pr in t a , ”x” , b , ”=” , d
 	� �

Here is the output from running the program:� �� �
1 >>>

2 Te l l me a number : 8
3 Te l l me another number : 7
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4

5 Traceback ( most r e c en t c a l l l a s t ) :
6 F i l e ”example . py” , l i n e 7 , in <module>
7 d = a ∗ bb
8 NameError : name ’bb ’ i s not de f ined
 	� �To help you to identify the error, you should:

1. Look at the last line of the error message to identify the kind of error. In

this case, we see

NameError: name ‘bb‘ is not defined

2. Look at the third last line of the error message (line 10 in the example

above). This will tell you where the error was detected.

File "example.py", line 9, in <module>

This tells us the file and the line where the error occurred. You should look

very carefully at this line of your program and try to see where you made

a mistake. If you look at line 9 of the program in the example above, you

will see that the programmer has accidentally typed ‘bb’ instead of ‘b’.

To help you find a certain line number in a Python program, the editor window

tells you in the bottom-right corner the number of the line where your cursor

is currently located. You can also use Edit → Go to Line to move to a

specific line.

If you know what line the error is in, but you cannot figure out exactly what

the problem is, see if you can think of a way of rephrasing your instruction a

bit. Try something a little bit different and see what it does. This can help you

to diagnose the problem.

If a program contains more than one error, Python will display the message for

the first one which it encounters. So after you have found and fixed an error,

you may be given a different error message. This is usually a good sign. It

often means that you have fixed the first error and can move on to fixing the

next one.

Some common types of errors are:
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Error Explanation and possible causes

SyntaxError The command is not understood by Python. Perhaps:

• You have used incorrect bracket types (e.g. ( ) instead of [ ])

• You have forgotten a bracket

• Your indentation is incorrect

(wrong number of spaces at start of line)

NameError There is no variable with the given name. Perhaps:

• You have mistyped the name of a variable.

• You have forgotten to set a starting value for a variable.

ImportError A module to be imported does not exist. Perhaps:

• You mistyped the name of the module to import.

OverflowError The answer is too large or too small to calculate.

ValueError One of the arguments you have given is not valid for this

function.

IndexError You have used an invalid index to an array or sequence.

TypeError One of the arguments you have given is not the correct type—

for instance, you may have put quotation marks around a

number in a numerical calculation.

Some of these errors you will probably not see until later on. For example, an

IndexError will not make much sense until you have learned about arrays.

These errors are included in the table so that you can use this table as a

reference later on.

A.4 Conditionals

Sometimes when programming, you want the computer to behave in a different

way depending on whether a certain condition is true or false. For example, if

you had written a program to simulate the metabolism of alcohol by the body,

you might want to print a different message depending on the answer to the

question “is the blood alcohol content greater than 0.05% after three hours?”

A.4.1 Boolean values

A Boolean value is a value which is either true or false, but cannot be both at
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the same time. Examples of statements which can be either true or false (but

not both) are:

All frogs are green 4 is greater than 3 x ≤ y, for given values of x and y.

Python uses the special values True and False to represent boolean values.

A.4.2 Evaluating conditions

Python has a number of operations which will always result in Boolean values

when the operations are used on two numbers.

Operation Mathematical Python

representation representation

Greater than a > b a > b

Less than a < b a < b

Greater than or equal a ≥ b a >= b

Less than or equal a ≤ b a <= b

Equal to a = b a == b

Not equal to a 6= b a != b

You can use these operations in Python in the same way that we used mathe-

matical operations such as + or -.

Notice that the operator for checking whether two things are equal in Python

is == and not just a single = sign. We have already seen that the single = sign

is used to assign a value to a variable.

A.4.3 Combining conditions

Boolean values can also be combined using and, or, not, in the following ways:

• x and y is true if and only if both x is true and y is true.

• x or y which is true if x is true or y is true, or both x and y are true.

• not x which is true if and only if x is false.

The effects of these conditions are illustrated in the following Python program.
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Program A.9: Booleans

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3 x = 4
4 y = 5
5 pr in t x>4
6 pr in t x>=4
7 pr in t x==4
8 pr in t x==4 and y==5
9 pr in t x==5 or y==4
 	� �

Here is the output from running the program:� �� �
1 False
2 True
3 True
4 True
5 False
 	� �
A.4.4 Conditional statements

Now that we can evaluate conditions, we can use them to write statements

which are only performed if a given condition is true.

The if statement

Simple conditional statements are written in the following way:� �� �
1 i f c ond i t i on :
2 a c t i o n s
 	� �

This statement will run actions, but only if condition is true. Note that

the indentation is important. Python uses the indentation so it can tell

which actions to perform only if the condition is met. If the condition is not

true, the next command that runs is the first command after the indented

lines.

The following program inputs a driver’s blood alcohol content and prints a

message if it is illegal to drive in Queensland.
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Program A.10: BAC, conditionals and driving 1

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 # This program inputs your blood a l c o h o l content BAC
5 # and p r i n t s a message i f you are over the l e g a l l i m i t .
6

7 BAC = input ( ”What i s your blood a l c o h o l content ? ” )
8

9 i f BAC >= 0 . 0 5 :
10 pr in t ”You are over the l e g a l l i m i t ! ”
 	� �

Here is the output from running the program twice:

� �� �
1 What i s your blood a l c o h o l content ? 0 .07
2 You are over the l e g a l l i m i t !
3

4 What i s your blood a l c o h o l content ? 0 .04
 	� �
Note that in the second case there is no message printed, as it is legal to drive

with a blood alcohol content of 0.04.

The else statement

In the previous example, the program outputs a message if it is illegal to drive,

but gives no output if it legal to drive. The program would be more useful if it

printed out a different message if it is legal to drive.

When programming, it is often the case that we have two possible situations,

with a need to execute one or other of the cases depending on the value of some

Boolean condition. This is done in the following way.

The following program inputs a driver’s blood alcohol content and prints a

message stating whether it is legal to drive in Queensland.
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Program A.11: BAC, conditionals and driving 2

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 # This program inputs your BAC and p r i n t s a message
5 # i n d i c a t i n g whether or not i t i s l e g a l to d r i v e .
6

7 BAC = input ( ”What i s your blood a l c o h o l content ? ” )
8

9 i f BAC >= 0 . 0 5 :
10 pr in t ”You are over the l e g a l l i m i t ! ”
11 e l s e :
12 pr in t ”You are l e g a l to d r i v e ! ”
 	� �

Here is the output from running the program twice:� �� �
1 What i s your blood a l c o h o l content ? 0 .07
2 You are over the l e g a l l i m i t !
3

4 What i s your blood a l c o h o l content ? 0 .04
5 You are l e g a l to d r i v e !
 	� �

If there are multiple different conditions to check then the following approach

is used:� �� �
1 i f c ond i t i on1 :
2 ac t i on1
3 e l i f cond i t i on2 :
4 ac t i on2
5 e l i f cond i t i on3 :
6 ac t i on3
7 e l s e :
8 o t h e r a c t i o n
 	� �

The command elif is short for “else if”, and means that Python should do

these actions if the previous conditions are not true, but this condition is. The

else section is only run if none of the other conditions is true.

Once again, we can use this new form to extend our example.
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Program A.12: BAC, conditionals and driving 3

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3 # This program inputs your BAC and p r i n t s a message
4 # i n d i c a t i n g whether i t i s l e g a l to dr ive , or BAC = 0 .
5

6 BAC = input ( ”What i s your blood a l c o h o l content ? ” )
7

8 i f BAC >= 0 . 0 5 :
9 pr in t ”You are over the l e g a l l i m i t ! ”

10 e l i f BAC == 0 :
11 pr in t ”Your BAC i s zero ; go f o r i t ! ”
12 e l s e :
13 pr in t ”You are l e g a l to d r i v e UNLESS you are on”
14 pr in t ”a Learner ’ s permit or a P r o v i s i o n a l l i c e n c e . ”
 	� �

Here is the output from running the program three times:� �� �
1 What i s your blood a l c o h o l content ? 0 .07
2 You are over the l e g a l l i m i t !
3

4 What i s your blood a l c o h o l content ? 0 .04
5 You are l e g a l to d r i v e UNLESS you are on
6 a Learner ’ s permit or a P r o v i s i o n a l l i c e n c e .
7

8 What i s your blood a l c o h o l content ? 0
9 Your BAC i s zero ; go f o r i t !
 	� �
A.5 Loops

A.5.1 Why loops?

In all of the programming which we have done so far, each of the lines of code

in the program were executed once in the order in which they were written

(except for lines inside an if statement). Solving problems often requires the

program to execute a sequence of code multiple times.

For instance, suppose we were modelling population growth in a predator-prey

system. We might write a few lines of programming to describe how the number

of predators and number of prey interact over a year. If we wanted to simulate
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a population over 50 years, it would be inconvenient to have to repeat the same

programming 50 times. The programming concept which allows lines of code

to execute multiple times in succession is called a loop.

A.5.2 While loops

Different programming languages have different kinds of loop. In this section

we will focus on while loops in Python. A while loop in Python is constructed

in the following way:� �� �
1 whi le cond i t i on :
2 a c t i o n s
 	� �Here, condition is a Boolean condition (an expression that can either be true

or false) and actions is an indented sequence of instructions forming the loop

body. The condition may include any of the boolean operations which we

looked at in the last section. Once again, it is important that the loop body is

indented. When Python executes a while loop, it will:

1. Check whether condition is true.

2. If condition is not true, jump to step 4.

3. If condition is true, execute the actions in the loop body, then return

to step 1.

4. Run the rest of the program, recommencing from the first line after the

loop body.

Program A.13: Loops

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3 # Using a loop to c a l c u l a t e and pr in t square and cubic numbers .
4

5 i = 1
6 whi le i <= 5 :
7 pr in t i , i ∗ i , i ∗ i ∗ i
8 i = i + 1
9 pr in t ”Done . ”
 	� �

The output of this program is:� �� �
1 1 1 1
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2 2 4 8
3 3 9 27
4 4 16 64
5 5 25 125
6 Done .
 	� �

The events in the program are carried out in the following sequence:

• In Line 4, i is set to 1.

• Python tests the condition i <= 5 (Line 5) and finds that it is true.

• Python executes the loop body (Lines 6 and 7), which:

– Prints 1, 12 and 13.

– Sets i to equal 2.

• Python tests the condition in Line 5 again and finds that i <= 5 is still

true.

• Python executes the loop body again, which:

– Prints 2, 22 and 23.

– Sets i to equal 3.

• Python tests the condition in Line 5 again.

• This process continues until i is 5.

• Python tests the condition in Line 5 and finds that i <= 5 is still true.

• Python executes the loop body which:

– Prints 5, 52 and 53.

– Sets i to equal 6.

• Python tests the condition in Line 5 and finds that i <= 5 is now false.

• The program resumes at the first line after the loop body (Line 8), which

prints the word “Done.”.
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A.5.3 Loop forever...

A while loop will continue to run the commands in the loop body until the

condition is no longer met. This means that you have to be very careful that

you choose a condition which will cause the loop to stop at some stage.

Consider the following loop:

Program A.14: Infinite loop

� �� �
1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3 x = 3
4 whi le x < 10 :
5 pr in t ” f o r e v e r . . . ”
 	� �

Notice that there is nothing within the body of the loop that changes the value

of x. This means that the condition x < 10 will always be true, so the loop

will never terminate. This is called an infinite loop. Take care to avoid infinite

repetition when writing loops.

Stopping infinite loops

If you run a Python program and it seems to be taking a long time, it may

contain an infinite loop. If you suspect that a running program contains an

infinite loop, you can terminate it by pressing Ctrl+C.

A.5.4 Nested loops

Sometimes it may become necessary to have loops within loops. For instance,

in a neuroscience model you might want to have one loop which goes through

all the neurons in your model, and use this within a loop which steps through

time to calculate how the system changes over time. This is called nesting—one

loop is said to be nested within the other.

To accomplish this in Python, you can simply put one loop inside the body of

another loop. Remember that the body of the inner loop must be double

indented.
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Program A.15: Nested loops

� �� �
1 # This program demonstrates nested loops .
2 from f u t u r e import d i v i s i o n
3 from pylab import ∗
4

5 a = 1
6 whi le a <= 3 :
7 b = 1
8 whi le b <= a :
9 pr in t ”a =” , a , ”and b =” , b

10 b = b + 1
11 a = a + 1
 	� �

In this program:

• Line 4 contains the condition for the outer loop.

• Lines 5 to 9 form the body of the outer loop.

• Line 6 contains the condition for the inner loop.

• Lines 7 and 8 form the body of the inner loop.

• Line 9 is part of the body of the outer loop, but not part of the inner loop.

When the condition of the inner loop is false, the program will resume at the

next line which is not part of the body of that loop: line 9. This is however

part of the body of the outer loop.

This program generates the following output:� �� �
1 a = 1 and b = 1
2 a = 2 and b = 1
3 a = 2 and b = 2
4 a = 3 and b = 1
5 a = 3 and b = 2
6 a = 3 and b = 3
 	� �

You can also nest conditional (if) statements inside loops and vice versa. By

combining loops and conditionals, you can create very powerful algorithms to

solve scientific problems.
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A.6 Arrays

We have already used Python to store individual data values in variables such

as x or y. Often we need to store many related items of data. In these cases,

using an individual variable for each value can make things cumbersome.

Programming languages provide different mechanisms for storing lots of data.

In general, a data structure is a way of storing and accessing data in a

computer program.

A key component of good programming is choosing a data structure that is

appropriate to the problem being solved. Choosing a good data structure can

allow algorithms to run much more quickly or to make more efficient use of the

available computer memory.

Probably the most common data structure is the array.

A.6.1 What is an array?

An array is a group of data items, and may be thought of as a list or table of

data. The position of an entry in an array is given by one or more indices.

The number of indices needed to specify the positions of each element in an

array is called the dimension of the array. For example in a one-dimensional

array, each value in the array can be accessed using a single index, such as 1

or 5 or 16. The number of elements in an array is called the size of the array.

We will only cover one-dimensional arrays in SCIE1000.

A.6.2 Printing arrays

To print the contents of an entire array, you can use the print command as we

have seen before. Python will print the array on the screen in a neat format.

For instance, suppose A is an array containing the three elements 10, 20, 30.

If you were to write print A in a program, Python would print [10 20 30].

The square brackets around the entries indicate that the thing being printed is

an array.

A.6.3 Creating arrays

There are two common ways to create arrays in Python. These are outlined

below with examples of their use. Always remember that you need to import

the module pylab before you can use arrays.
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Creating an array from values

The array command is used to create an array containing a given list of values.

Creating arrays with a list of values

To create a one-dimensional array containing a list of values, use:

A = array([...])

where ... lists the values of the entries in the array, separated by

commas. It is important to type the square brackets [ ] and round brackets

( ) as shown or the command will not work correctly.

The following program illustrates this method of creating arrays.

Program A.16: Creating arrays from lists

� �� �
1 # This example c r e a t e s an array from a l i s t o f va lue s .
2 from f u t u r e import d i v i s i o n
3 from pylab import ∗
4

5 # Create a new array with the g iven va lues .
6 A = array ( [ 2 , 4 , 6 , 8 , 1 0 ] )
7 pr in t A
 	� �

The output from running this program is:� �� �
1 [ 2 4 6 8 10 ]
 	� �
Creating an empty array

Creating arrays of a given size

To create an array of a given size, with all entries equal to zero, use:

A = zeros(...)

where ... gives the size of the new array.

This is illustrated in the following program:
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Program A.17: Creating an empty array� �� �
1 # This example i l l u s t r a t e s how to c r e a t e an empty array .
2

3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5 # Create a new array conta in ing f i v e 0 s .
6 B = ze ro s (5 )
7

8 # Create an array conta in ing seven 0 s .
9 C = ze ro s (7 )

10

11 pr in t B
12 pr in t C
 	� �

The output from running this program is:� �� �
1 [ 0 0 0 0 0 ]
2 [ 0 0 0 0 0 0 0 ]
 	� �A.6.4 Arrays and indices in Python

Accessing arrays

In Python, arrays are given names just like any other variables, and an entire

array can be accessed by giving its name. To access specific elements in

an array, you must give the name of the array, immediately followed by the

appropriate index surrounded by square brackets. For example, if A is an array,

then A[i] will give the value of the element at position i.

Accessing array elements

To access specific elements in an array, you must give the name of the

array, immediately followed by the appropriate index surrounded by square

brackets.

Array indices

The index of an element refers to the position of that element in the array. In

Python, the first entry in an array has index 0. This is potentially confusing,

but it is important to remember. This is also true in many (but not all!) other

computer languages. Let A be an array which contains n entries. The valid

values of the index are from 0 to n− 1 (inclusive).

397



n−1n−2210index:

A[n−1]A[2]A[0]

A:
������

Figure A.1: Indexing elements in a one-dimensional array A with n entries

Array indices

In Python, the first element in an array has index 0.

The following example illustrates creating an array and assigning values to its

elements.
Program A.18: Assigning values to array entries� �� �

1 from f u t u r e import d i v i s i o n
2 from pylab import ∗
3

4 # F i r s t c r e a t e an array c a l l e d A with 5 e n t r i e s .
5 A = ze ro s (5 )
6 pr in t ” Step one : ” , A
7

8 # Now a s s i g n the value 2 to the f i r s t element o f A.
9 A[ 0 ] = 2

10 pr in t ” Step two : ” , A
11

12 # Assign the value 10 to the l a s t element o f A.
13 A[ 4 ] = 10
14 pr in t ” Step three : ” , A
15

16 # Access the va lue s we have j u s t a s s i gned and save them in x .
17 x = A[ 0 ] + A[ 4 ]
18 pr in t ” Step four , x =” , x
19

20 # Assign the value 40 to A [ 1 ] .
21 A[ 1 ] = 2 ∗ A[ 4 ] ∗ A[ 0 ]
22 pr in t ” Step f i v e : ” , A
 	� �

The output from running this program is:� �� �
1 Step one : [ 0 0 0 0 0 ]
2 Step two : [ 2 0 0 0 0 ]
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3 Step three : [ 2 0 0 0 10 ]
4 Step four , x = 12
5 Step f i v e : [ 2 40 0 0 10 ]
 	� �After running the above program, the array A will look as follows:

10402

43210index:

A:

Figure A.2: Assigning and accessing values in an array A with five entries

A.6.5 Copying an existing array

If oldA is an array and you want to copy it into a new array named newA, use:

newA = oldA.copy()

Do not use newA = oldA as this does not create a new copy. (Instead, both

oldA and newA will refer to the same data.)

Program A.19: Copying arrays

� �� �
1 # This program demonstrates copying an array .
2 from f u t u r e import d i v i s i o n
3 from pylab import ∗
4

5 A = array ( [ 5 , 1 0 , 1 5 ] )
6 B = A. copy ( )
7 pr in t B
 	� �

The output of this program is:� �� �
1 [ 5 10 15 ]
 	� �
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A.6.6 Operations on entire arrays

Many of the Python commands we have already seen can act element-by-

element on entire arrays at once, producing new arrays as their output. The

operations + - * / act on two arrays A and B of the same size, and

the output is an array (of the same size) resulting from applying the given

operation to corresponding pairs of elements from A and B.

The Python functions sqrt, sin, cos, tan, exp, log and log10 all act on

single arrays, with the output an array (of the same size) resulting by applying

the operation to each element. For instance, consider look through the following

program and its output:
Program A.20: Functions and arrays� �� �

1 # This example program shows Python operat ing on e n t i r e a r rays .
2 # Fir s t , c r e a t e an array with 5 elements , then c r e a t e a new
3 # array conta in ing the squares o f the se e lements .
4 A = array ( [ 5 , 10 , 5 , 0 , 2 0 ] )
5 B = A ∗ A
6

7 # Create a new array .
8 C = array ( [ 1 , 4 , 9 , 16 , 25 , 3 6 ] )
9

10 # Display combinat ions o f the se ar rays .
11 pr in t B
12 pr in t A + B
13 pr in t s q r t (C)
 	� �

The output of this program is:� �� �
1 [ 25 100 25 0 400 ]
2 [ 30 110 30 0 420 ]
3 [ 1 . 2 . 3 . 4 . 5 . 6 . ]
 	� �
A.7 Graphs

A.7.1 Drawing a graph

One of the major uses of computers in modelling is data visualisation. The

simplest type of visualisation is a graph. Graphs usually involve plotting points,

given their x- and y-coordinates. To draw a graph in Python, you need an array
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of x-coordinates and an array of y-coordinates. These arrays must be the same

size. To plot a graph, we use the command plot(A, B). Python pairs up the

values in the two arrays to form points of (x, y), and then plots the points. (To

draw multiple plots on the same graph, use the plot(...) command more

than once.) The command show() displays all plotted graphs on the screen.

Graphing in Python

Suppose A is an array containing the x-coordinates of n points, and B is an

array containing the y-coordinates of the n points, in the same order.

To draw a graph of the points with lines joining the consecutive points, use

the following commands.

plot(A, B)

show()

Note that you must type the brackets in show() or the command will not

work as expected. The show() command should only be used once in a

program, and should be the last command in your program.

The following example shows how to use Python to plot x2 versus x for integer

values of x from 0 to 9 inclusive.

Program A.21: Graphing� �� �
1 # This program p l o t s x∗∗2 vs x f o r x ranging from 0 to 9 and
2 # connects the conse cu t i v e po in t s .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5 A = array ( [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] )
6 B = A ∗ A
7 p lo t (A, B)
8 show ( )
 	� �

Here is the output from running the program:
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Figure A.3: A graph with values shown as a curve.

A.7.2 Plotting separate points

Sometimes you may want to plot discrete points rather than a curve.

Changing the style of plotting

To select the colour and style when plotting, type

plot(X, Y, ’style’)

where style is replaced by letters representing the colour and marker to use.

Valid colours are b g r c m y k w. Valid marker styles are + , o . s

v x < > ^. To connect the dots, include the - character with the settings,

for example plot(A,B,’ro-’), which plots the points in red, marked by

circles and joined with a line.

The following example shows how to plot a graph using crosses.
Program A.22: Graphing� �� �

1 # Plot x∗∗2 vs x as d i s c r e t e po in t s with x between 0 and 9 .
2 from f u t u r e import d i v i s i o n
3 from pylab import ∗
4 A = array ( [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] )
5 B = A ∗ A
6 # Note the a d d i t i o n a l parameter ’ bx ’ to the p l o t command .
7 # This i n d i c a t e s that blue c r o s s e s should be used .
8 p lo t (A,B, ’ bx ’ , markeredgewidth=3)
9 show ( )
 	� �
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Here is the output from running the program:

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Figure A.4: A graph with values shown as discrete points.

A.7.3 Graphing mathematical functions

When drawing graphs, you most likely either want to graph measured values

(perhaps from an experiment), or a mathematical equation. Previously we

plotted measured data points. To plot an equation, you want the computer

to draw a smooth curve. Computers cannot actually draw smooth curves:

instead, they approximate smooth curves by drawing straight line segments

joining points that are very close together. (If you look at the graph in Example

A.3 you may be able to see some straight line segments.) The more data points

you have, the smoother your curve will look. The exact number of points that

you will need will be different for different problems.

How to graph an equation

To plot a mathematical equation in Python, you first need to calculate some

points which lie on the curve. The usual approach is to:

• Create an array with the x-coordinates of “appropriate” points.

• Create an array of the corresponding y-coordinates by applying the

equation to each x-coordinate.

• Plot the graph.

• If the graph is not sufficiently smooth, edit your program so that it uses

more data points.
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Suppose you are attempting to plot a mathematical equation. Let X represent

an array of x-coordinates, and Y be the array of corresponding y-coordinates.

Once you have created X you can easily create Y by applying the function to

X . In order to create X you could type each of the x-coordinates, but this

takes a long time, especially if you need a lot of data points to make the graph

look smooth.

When plotting graphs on computers, it is very common to choose points whose

x-coordinates are equally spaced. This means that the difference between the

x-coordinates of consecutive points is a constant, and this distance is chosen

to be sufficiently small for the plots to look smooth. Python has a command

arange to easily create an array of equally spaced points.

Equally spaced values in Python

To create an array X of equally spaced values in Python, use this command:

X = arange(a,b,s)

This creates an array of points with values starting at a, increasing by an

equally spaced step of s each time, and stopping at the last value less

than b.

Take care here: the final value in the array is always strictly less

than b. So, for example,

X = arange(0,1,0.2)

does not include the value 1, so

X=array([0.,0.2,0.4,0.6,0.8]).

The command arange is very useful for graphing. If the graph is not sufficiently

smooth then use arange to create more points.

This example demonstrates using the arange function to help with plotting

sinx versus x for values of x from 0 to 5.
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Program A.23: Plotting functions� �� �
1 # This program uses arange ( ) to he lp p l o t s i n ( x ) vs x f o r
2 # values o f x ranging from 0 to 5 .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5 # Plot with the x−coo rd ina t e s separated by 0 . 5 .
6 X = arange ( 0 . 0 , 5 . 1 , 0 . 5 )
7 B = s i n (X)
8 p lo t (X, B)
9 show ( )
 	� �

Upon examining the graph produced by this program (shown at the left, below),

we might decide that there are too few points. In an effort to produce a

smoother graph, we might modify the program as follows:

Program A.24: Plotting functions smoothly� �� �
1 # This program uses arange ( ) to he lp p l o t s i n ( x ) vs x f o r
2 # values o f x ranging from 0 to 5 .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5 # Plot with x−coords separated by . 1 to make graph smoother .
6 X = arange ( 0 . 0 , 5 . 1 , 0 . 1 )
7 B = s i n (X)
8 p lo t (X, B)
9 show ( )
 	� �
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Figure A.5: Two sin graphs, plotted by the above programs. The graph on the right plots more points,
and hence is smoother.
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A.7.4 Titles and axes

On any scientific graph it is important to title the graph and label the axes.

This can be done in Python using the following commands:

• title("Graph Title") – sets the graph title.

• xlabel("Time (s)") – sets the label on the horizontal axis.

• ylabel("Heart rate (bpm)") – sets the label on the vertical axis.

Program A.25: Formatting graphs� �� �
1 # This program uses the t i t l e ( ) , x l a b e l ( ) and y l a b e l ( )
2 # commands to draw ” pre t ty ” graphs .
3 from f u t u r e import d i v i s i o n
4 from pylab import ∗
5 # Create an array us ing arange then d e f i n e the func t i on .
6 x = arange ( 0 . 0 , 10 . 1 , 0 . 2 )
7 y = 2 ∗ exp ( 0 . 4 ∗ x )
8

9 # Draw the graph with t i t l e and l a b e l s .
10 p lo t (x , y , l i n ew id th =3)
11 t i t l e ( ”Graph o f Student I n t e r e s t in Free BBQ” )
12 x l a b e l ( ”Time a f t e r f i r s t sausage i s cooked (min ) ” )
13 y l a b e l ( ”Number o f s tudents ” )
14 show ( )
 	� �

The output from running this program is:

0 2 4 6 8 10
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Graph of Student Interest in Free BBQ

Figure A.6: A graph with a title and labels on the axes.
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