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Preface

I attempted mathematics, and even went during the sum-
mer of 1828 with a private tutor to Barmouth, but I got
on very slowly. The work was repugnant to me, chiefly
from my not being able to see any meaning in the early
steps in algebra. This impatience was very foolish, and in
after years I have deeply regretted that I did not proceed
far enough at least to understand something of the great
leading principles of mathematics, for men thus endowed
seem to have an extra sense.

Charles Darwin, Autobiography (1876)

Charles Darwin wasn’t the last biologist to regret not knowing more

about mathematics. Perhaps if he had started his university education at

the beginning of the 21st century, instead of in 1828, and had been able

to profit from using a computer algebra package, he would have found the

material less forbidding.

This book is about pure mathematics. Our aim is to equip the readers

with understanding and sufficiently deep knowledge to enable them to use it

in solving problems. We also hope that this book will help readers develop

an appreciation of the intrinsic beauty of the subject!

We have said that this book is about mathematics. However, we make

extensive use of the computer algebra package Maple in our discussion.

Many books teach pure mathematics without any reference to computers,

whereas other books concentrate too heavily on computing, without ex-

plaining substantial mathematical theory. We aim for a better balance:

we present material which requires deep thinking and understanding, but

we also fully encourage our readers to use Maple to remove some of the

laborious computations, and to experiment. To this end we include a large

number of Maple examples.
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Most of the mathematical material in this book is explained in a fairly

traditional manner (of course, apart from the use of Maple!). However,

we depart from the traditional presentation of integral by presenting the

Kurzweil—Henstock theory in Chapter 15.

Outline of the book

There are fifteen chapters. Each starts with a short abstract describing the

content and aim of the chapter.

In Chapter 1, “Introduction”, we explain the scope and guiding philos-

ophy of the present book, and we make clear its logical structure and the

role which Maple plays in the book. It is our aim to equip the readers with

sufficiently deep knowledge of the material presented so they can use it in

solving problems, and appreciate its inner beauty.

In Chapter 2, “Sets”, we review set theoretic terminology and notation

and provide the essential parts of set theory needed for use elsewhere in

the book. The development here is not strictly axiomatic—that would

require, by itself, a book nearly as large as this one—but gives only the most

important parts of the theory. Later we discuss mathematical reasoning,

and the importance of rigorous proofs in mathematics.

In Chapter 3, “Functions”, we introduce relations, functions and var-

ious notations connected with functions, and study some basic concepts

intimately related to functions.

In Chapter 4, “Real Numbers”, we introduce real numbers on an ax-

iomatic basis, solve inequalities, introduce the absolute value and discuss

the least upper bound axiom. In the concluding section we outline an al-

ternative development of the real number system, starting from Peano’s

axioms for natural numbers.

In Chapter 5, “Mathematical Induction”, we study proof by induc-

tion and prove some important inequalities, particularly the arithmetic-

geometric mean inequality. In order to employ induction for defining new

objects we prove the so-called recursion theorems. Basic properties of pow-

ers with rational exponents are also established in this chapter.

In Chapter 6, “Polynomials”, we introduce polynomials. Polynomial

functions have always been important, if for nothing else than because, in

the past, they were the only functions which could be readily evaluated. In

this chapter we define polynomials as algebraic entities rather than func-
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tions and establish the long division algorithm in an abstract setting. We

also look briefly at zeros of polynomials and prove the Taylor Theorem for

polynomials in a generality which cannot be obtained by using methods of

calculus.

In Chapter 7, “Complex Numbers”, we introduce complex numbers,

that is, numbers of the form a + bı where the number ı satisfies ı2 = −1.

Mathematicians were led to complex numbers in their efforts of solving al-

gebraic equations, that is, of the form anx
n + an−1x

n−1 + · · · + a0 = 0,

with the ak real numbers and n a positive integer (this problem is perhaps

more widely known as finding the zeros of a polynomial). Our introduction

follows the same idea although in a modern mathematical setting. Complex

numbers now play important roles in physics, hydrodynamics, electromag-

netic theory and electrical engineering, as well as pure mathematics.

In Chapter 8, “Solving Equations”, we discuss the existence and unique-

ness of solutions to various equations and show how to use Maple to find

solutions. We deal mainly with polynomial equations in one unknown, but

include some basic facts about systems of linear equations.

In Chapter 9, “Sets Revisited”, we introduce the concept of equivalence

for sets and study countable sets. We also briefly discuss the axiom of

choice.

In Chapter 10, “Limits of Sequences”, we introduce the idea of the limit

of a sequence and prove basic theorems on limits. The concept of a limit is

central to subsequent chapters of this book. The later sections are devoted

to the general principle of convergence and more advanced concepts of limits

superior and limits inferior of a sequence.

In Chapter 11, “Series”, we introduce infinite series and prove some basic

convergence theorems. We also introduce power series—a very powerful tool

in analysis.

In Chapter 12, “Limits and Continuity of Functions”, we define limits of

functions in terms of limits of sequences. With a function f continuous on

an interval we associate the intuitive idea of the graph f being drawn with-

out lifting the pencil from the drawing paper. The mathematical treatment

of continuity starts with the definition of a function continuous at a point;

this definition is given here in terms of a limit of a function at a point. We

develop the theory of limits of functions, study continuous functions, and

particularly functions continuous on closed bounded intervals. At the end

of the chapter we touch upon the concept of limit superior and inferior of

a function.

In Chapter 13, “Derivatives”, we start with the informal description
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of a derivative as a rate of change. This concept is extremely important

in science and applications. In this chapter we introduce derivatives as

limits, establish their properties and use them in studying deeper properties

of functions and their graphs. We also extend the Taylor Theorem from

polynomials to power series and explore it for applications.

In Chapter 14, “Elementary Functions”, we lay the proper foundations

for the exponential and logarithmic functions, and for trigonometric func-

tions and their inverses. We calculate derivatives of these functions and use

these for establishing important properties of these functions.

In Chapter 15, “Integrals”, we present the theory of integration intro-

duced by the contemporary Czech mathematician J. Kurzweil. Sometimes

it is referred to as Kurzweil—Henstock theory. Our presentation generally

follows Lee and Výborný (2000, Chapter 2).

The Appendix contains some examples of Maple programs. Finally, the

book concludes with a list of References, an Index of Maple commands used

in the book, and a general Index.

Notes on notation

Throughout the book there are a number of ways in which the reader’s

attention is drawn to particular points. Theorems, lemmas1 and corollaries

are placed inside rectangular boxes with double lines, as in

Theorem 0.1 (For illustrative purposes only!) This theorem is

referred to only in the Preface, and can safely be ignored when reading

the rest of the book.

Note that these are set in slanting font, instead of the upright font used in

the bulk of the book.

Definitions are set in the normal font, and are placed within rectangular

boxes, outlined by a single line and with rounded corners, as in�
�

�
�

Definition 0.1 (What is mathematics?) There are almost as

many definitions of what mathematics is as there are professional math-

ematicians living at the time.

1A lemma is sometimes known as an auxiliary theorem. It does not have the same
level of significance as a theorem, and is usually proved separately to simplify the proof
of the related theorem(s).
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The number before the decimal point in all of the above is the number

of the chapter: numbers following the decimal point label the different

theorems, definitions, examples, etc., and are numbered consecutively (and

separately) within each chapter. Corollaries are labeled by the number of

the chapter, followed by the number of the theorem to which the corollary

belongs then followed by the number of the individual corollary for that

theorem, as in

Corollary 0.1.1 (Also for illustrative purposes only!) Since

Theorem 0.1 is referred to only in the Preface, any of its corollaries

can also be ignored when reading the rest of the book.

Corollary 0.1.2 (Second corollary for Theorem 0.1) This is

just as helpful as the first corollary for the theorem!

Corollaries are set in the same font as theorems and lemmas.

Most of the theorems, lemmas and corollaries in this book are provided

with proofs. All proofs commence with the word “Proof.” flush with the

left margin. Since the words of a proof are set in the same font as the rest

of the book, a special symbol is used to mark the end of a proof and the

resumption of the main text. Instead of saying that a proof is complete, or

words to that effect, we shall place the symbol � at the end of the proof,

and flush with the right margin, as follows:

Proof. This is not really a proof. Its main purpose is to illustrate the

occurrence of a small hollow square, flush with the right margin, to indicate

the end of a proof. �

Up to about the middle of the 20th century it was customary to use

the letters ‘q.e.d.’ instead of �, q.e.d. being an abbreviation for quod

erat demonstrandum, which, translated from Latin, means which was to

be proved.

To assist the reader, there are a number of Remarks scattered through-

out the book. These relate to the immediately preceding text. There are

also Examples of various kinds, used to illustrate a concept by providing a

(usually simple) case which can show the main distinguishing points of a

concept. Remarks and Examples are set in sans serif font, like this, to help

distinguish them.
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Remark 0.1 The first book published on calculus was Sir Isaac Newton’s

Philosophiae Naturalis Principia Mathematica (Latin for The Mathematical

Principles of Natural Philosophy), commonly referred to simply as Principia.

As might be expected from the title, this was in Latin. We shall avoid the use

of languages other than English in this book.

Since they use a different font, and have additional spacing above and

below, it is obvious where the end of a Remark or an Example occurs, and

no special symbol is needed to mark the return to the main text.

Scissors in the margin

Obviously, we must build on some previous knowledge of our readers. Chap-

ter 1 and Chapter 2 summarise such prerequisites. Chapter 1 contains also

a brief introduction to Maple. Starting with Chapter 3 we have tried to

make sure that all proofs are in a strict logical order. On a few occasions

we relax the logical requirements in order to illustrate some point or to

help the reader place the material in a wider context. All such instances

are clearly marked in the margin (see the outer margin of this page), the
�

beginning by scissors pointing into the book, the end by scissors opening

outwards. The idea here is to indicate readers can skip over these sections

if they desire strict logical purity. For instance, we might use trigonometric

functions before they are properly introduced,2 but then this example will
�

be scissored.

Exercises

There are exercises to help readers to master the material presented. We

hope readers will attempt as many as possible. Mathematics is learned

by doing, rather than just reading. Some of the exercises are challenging,

and these are marked in the margin by the symbol !©. We do not expect

that readers will make an effort to solve all these challenging problems,

but should attempt at least some. Exercises containing fairly important

additional information, not included in the main body of text, are marked

by i©. We recommend that these should be read even if no attempt is made

to solve them.

2Rather late in Chapter 14
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Chapter 1

Introduction

In this chapter we explain the scope and guiding philos-
ophy of the present book, we try to make clear its logical
structure and the role which Maple plays in the book. We
also wish to orientate the readers on the logical structure
which forms the basis of this book.

1.1 Our aims

Mathematics can be compared to a cathedral. We wish to visit a small

part of this cathedral of human ideas of quantities and space. We wish

to learn how mathematics can be built. Mathematics spans a very wide

spectrum, from the simple arithmetic operations a pupil learns in primary

school to the sophisticated and difficult research which only a specialist

can understand after years of long and hard postgraduate study. We place

ourselves somewhere higher up in the lower half of this spectrum. This can

also be roughly described as where University mathematics starts. In natu-

ral sciences the criterion of validity of a theory is experiment and practice.

Mathematics is very different. Experiment and practice are insufficient for

establishing mathematical truth. Mathematics is deductive, the only means

of ascertaining the validity of a statement is logic. However, the chain of

logical arguments cannot be extended indefinitely: inevitably there comes a

point where we have to accept some basic propositions without proofs. The

ancient Greeks called these foundation stones axioms, accepted their valid-

ity without questioning and developed all their mathematics therefrom. In

modern mathematics we also use axioms but we have a different viewpoint.

The axiomatic method is discussed later in section 2.5. Ideally, teaching

of mathematics would start with the axioms, however, this is hopelessly

1



Chapter 2

Sets

In this chapter we review set theoretic terminology and notation.
Later we discuss mathematical reasoning.

2.1 Sets

The word set as used in mathematics means a collection of objects. It is

customary to denote sets by capital letters like M , M1, etc., below. At this

stage the concept of a set is best illuminated by examples, so we list a few

sets and name them for ease of reference.

Table 2.1 Some examples of sets

M1, the set of all rational numbers greater than 1;

M2, the set of all positive even integers;

M3, the set of all buildings on the St Lucia campus of

the University of Queensland;

M4, the set of all readers of this book;

M5, the set of all persons who praise this book;

M6, the set of all persons who condemn this book;

M7, the set of all even numbers between 1 and 5.

In these examples we have used the word ‘all’ to make it doubly clear that,

for instance, every rational number greater than 1 belongs to M1. But

usually, in mathematics, if someone mentions the set of rational numbers

greater than 1 he or she means the set of all such numbers, and this is
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Chapter 3

Functions

In this chapter we introduce relations, functions and various no-
tations connected with functions, and study some basic concepts
intimately related to functions.

3.1 Relations

In mathematics it is customary to define new concepts by using set theory.

To say that two things are related is really the same as saying that the

ordered pair (a, b) has some property. This, in turn, can be expressed by

saying that the pair (a, b) belongs to some set. We define:�



�
	Definition 3.1 (Relation) A relation is a set of ordered pairs.

This means that if A and B are sets then a relation is a part of

the cartesian product A × B. If a set R is a relation and (a, b) ∈ R

then the elements a and b are related; we also denote this by writing

aRb. For example, if related means that the first person is the father

of the second person then this relation consists of all pairs of the form (fa-

ther, daughter) or (father, son). Another example of a relation is the set

C = {(1, 2), (2, 3), . . . , (11, 12), (12, 1)}. This relation can be interpreted

by saying that m and n are related (mCn) if n is the hour immediately

following m on the face of a 12 hour clock.

We define the domain of the relation R to be the set of all first elements

of pairs in R. Denoting by domR the domain of R we have

domR = {a ; (a, b) ∈ R} .

The range of R is denoted by rgR and is the set of all second elements of

63



Chapter 4

Real Numbers

In this chapter we introduce real numbers on an axiomatic basis,
solve inequalities, introduce the absolute value and discuss the
least upper bound axiom. In the concluding section we outline an
alternative development of the real number system.

4.1 Fields

Real numbers satisfy three groups of axioms—field axioms, order axioms

and the least upper bound axiom. We discuss each group separately.

A set F together with two functions (x, y) 7→ x + y, (x, y) 7→ xy from

F × F into F is called a field if the axioms in Table 4.1 are satisfied for all

x, y, z in F .

Table 4.1 Field axioms

A1 : x+ y = y + x M1 : xy = yx

A2 : x+ (y + z) = (x+ y) + z M2 : x(yz) = (xy)z

A3 : There is an element 0 ∈ F

such that 0 + x = x for all

x in F

M3 : There is an element 1 ∈ F ,

1 6= 0, such that 1x = x for

all x in F ;

A4 : For every element x ∈
F there exists an element

(−x) ∈ F such that (−x) +

x = 0.

M4 : For every element x ∈ F ,

x 6= 0, there exists an el-

ement x−1 ∈ F such that

x−1x = 1;

D : x(y + z) = xy + xz.
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Chapter 5

Mathematical Induction

In this chapter we study proof by induction and prove some im-
portant inequalities, particularly the arithmetic-geometric mean
inequality. In order to employ induction for defining new objects
we prove the so called recursion theorems. Basic properties of pow-
ers with rational exponents are also established in this chapter.

5.1 Inductive reasoning

The process of deriving general conclusions from particular facts is called

induction. It is often used in the natural sciences. For example, an ornithol-

ogist watches birds of a certain species and then draws conclusions about

the behaviour of all members of that species. General laws of motion were

discovered from the motion of planets in the solar system. The following

example shows that we encounter inductive reasoning also in mathematics.

Example 5.1 Let us consider the numbers n5−n for the first few natural

numbers:

n n5 − n

1 0

2 30

3 240

4 1020

5 3120

6 7770

7 16800

It seems likely that for every n ∈ N the number n5 − n is a multiple of 10.
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Chapter 6

Polynomials

Polynomial functions have always been important, if for nothing
else than because, in the past, they were the only functions which
could be readily evaluated. In this chapter we define polynomials
as algebraic entities rather than functions, establish the long divi-
sion algorithm in an abstract setting, we also look briefly at zeros
of polynomials and prove the Taylor Theorem for polynomials in a
generality which cannot be obtained by using methods of calculus.

6.1 Polynomial functions

If M is a ring and a0, a1, a2, . . . , an ∈ M then a function of the form

A : x 7→ anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (6.1)

is called a polynomial , or sometimes more explicitly, a polynomial with

coefficients in M . Obviously, one can add any number of zero coefficients,

or rewrite Equation (6.1) in ascending order of powers of x without changing

the polynomial. The domain of definition of the polynomial is naturally M ,

but the definition of A(x) makes sense for any x in a ring which contains

M . This natural extension of the domain of definition is often understood

without explicitly saying so. If A and B are two polynomials then the

polynomials A+B, −A and AB are defined in the obvious way as

A+B : x 7→ A(x) +B(x)

−A : x 7→ −A(x)

AB : x 7→ A(x)B(x)

The coefficients of A+B are obvious; they are the sums of the corresponding

coefficients of A and B. The zero polynomial function is the zero function,
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Chapter 7

Complex Numbers

We introduce complex numbers; that is numbers of the form a+ bı

where the number ı satisfies ı2 = −1. Mathematicians were led to
complex numbers in their efforts to solve so-called algebraic equa-
tions; that is equations of the form anxn +an−1x

n−1+ · · ·+a0 = 0,

with ak ∈ R, n ∈ N. Our introduction follows the same idea al-
though in a modern mathematical setting. Complex numbers now
play important roles in physics, hydrodynamics, electromagnetic
theory, electrical engineering as well as pure mathematics.

7.1 Field extensions

During the history of civilisation the concept of a number was unceasingly

extended, from integers to rationals, from positive numbers to negative

numbers, from rationals to reals, etc. We now embark on an extension of

reals to a field in which the equation

ξ2 + 1 = 0 (7.1)

has a solution. This will be the field of complex numbers.

Let us consider the following question. Is it possible to extend the field

of rationals to a larger field in which the equation ξ2 − 2 = 0 is solvable?

The obvious answer is yes: the reals. Is there a smaller field? The answer is

again yes: there is a smallest field which contains rationals and
√

2, namely

the intersection of all fields which contain Q and the (real) number
√

2.

Can this field be constructed directly without using the existence of R?

The answer is contained in Exercises 7.1.1–7.1.3.

The process of extension of a field can be most easily carried out in the

case of a finite field. Let us consider the following problem: is it possible
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Chapter 8

Solving Equations

In this chapter we discuss existence and uniqueness of solutions
to various equations and show how to use Maple to find solutions.
We deal mainly with polynomial equations in one unknown and
add only some basic facts about systems of linear equations.

8.1 General remarks

Given a function f , solving the equation1

f(x) = 0 (8.1)

means finding all x in dom f which satisfy Equation (8.1). Any x which

satisfies Equation (8.1) is called a solution of Equation (8.1). In this chapter

we assume that dom f is always part of R or C and it will be clear from the

context which set is meant. Solving an equation like (8.1) usually consists

of a chain of implications, starting with the equation itself and ending with

an equation (or equations) of the form x = a. For instance:

1

x+ 1
+

1

x+ 2
= 0 ⇒ x+ 2 + x+ 1 = 0,

⇒ 2x+ 3 = 0,

⇒ x = −3

2
.

(8.2)

For greater clarity we printed the implication signs, but implications are

always understood automatically. It is a good habit always to check the so-

lution by substituting the found value back into the original equation. This

1A more complicated equation of the form F (x) = G(x) can be reduced to the form
given by taking f = F −G.
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Chapter 9

Sets Revisited

In this chapter we introduce the concept of equivalence for sets and
study countable sets. We also discuss briefly the axiom of choice.

9.1 Equivalent sets

Two finite sets A and B have the same number of elements if there exists

a bijection of A onto B. We can count the visitors in a sold-out theatre by

counting the seats. The concept of equivalence for sets is an extension of

the concept of two sets having the same number of elements, generalised to

infinite sets.�
�

�


Definition 9.1 A set A is said to be equivalent to a set B if there

exists a bijection of A onto B; we then write A ∼ B.

Example 9.1

(a) The set N and the set of even positive integers are equivalent. Indeed,

n 7→ 2n is a bijection of N onto {2, 4, 6, . . .}.
(b) Z ∼ N. Let f : n 7→ 2n for n > 0, and f : n 7→ −2n + 1 for n ≤ 0.

Then f is obviously onto and it is easy to check that it is one-to-one.

Hence it is a bijection of Z onto N.

(c) ]0, 1[∼]0, ∞[. The required bijection is x 7→ 1

x
− 1.

We observe that the relation A ∼ B is reflexive, symmetric and tran-

sitive, and thus it is an equivalence relation. Reflexivity follows from the

use of the function idA, which provides a bijection of A onto itself. If the

function f is a bijection of A onto B then it has an inverse and f−1 is a

bijection of B onto A, so A ∼ B ⇒ B ∼ A. Finally, if f and g are bijections
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Chapter 11

Series

In this chapter we introduce infinite series and prove some basic
convergence theorems. We also introduce power series—a very
powerful tool in analysis.

11.1 Definition of convergence

Study of the behaviour of the terms of a sequence when they are successively

added leads to infinite series. For an arbitrary sequence n 7→ an ∈ C we

can form another sequence by successive additions as follows:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn = a1 + a2 + · · ·+ an =

n∑

i=1

ai (11.1)

To indicate that we consider n 7→ sn rather than n 7→ an we write
∑

ai. (11.2)

The symbol (11.2) is just an abbreviation for the sequence n 7→ sn, with

sn as in (11.1). We shall call (11.2) a “series” or an “infinite series”; an is

the nth term of (11.2); sn is the nth partial sum of (11.2).

It is usually clear from the context what the partial sums for a series

like (11.2) are. On the other hand, if ai =
1

ki
for some positive integer k
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Chapter 12

Limits and Continuity of Functions

Limits of functions are defined in terms of limits of sequences.
With a function f continuous on an interval we associate the in-
tuitive idea of the graph f being drawn without lifting the pencil
from the drawing paper. Mathematical treatment of continuity
starts with the definition of a function continuous at a point; this
definition is given here in terms of a limit of a function at a point.
In this chapter we shall develop the theory of limits of functions,
study continuous functions, and particularly functions continuous
on closed bounded intervals. At the end of the chapter we touch
upon the concept of limit superior and inferior of a function.

12.1 Limits

Looking at the graph of f : x 7→ x

|x| (1 − x) (Figure 12.1), it is natural to

say that the function value approaches 1 as x approaches 0 from the right.

Formally we define:�

�

�

�

Definition 12.1 A function f , with dom f ⊂ R, is said to have

a limit l at x̂ from the right if for every sequence n 7→ xn for which

xn → x̂ and xn > x̂ it follows that f(xn) → l. If f has a limit l at x̂

from the right, we write lim
x↓x̂

f(x) = l.

�

�

�

�
Definition 12.2 If the condition xn > x̂ is replaced by xn < x̂ one

obtains the definition of the limit of f at x̂ from the left. The limit of

f at x̂ from the left is denoted by lim
x↑x̂

f(x).

Remark 12.1 The symbols x ↓ x̂ and x ↑ x̂ can be read as “x decreases
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Exercise 13.1.2 Show that D
1

xn
= −n 1

xn+1
for x 6= 0 and n ∈ N.

[Hint: Use equation (13.1) and the result from Example 13.1, namely that

Dxn = nxn−1.]

Exercise 13.1.3 Use Maple to find D(1 +
√
x)/(1−√x).

13.2 Basic theorems on derivatives

If f is differentiable at x then the function

h 7→ D(h) =
f(x+ h)− f(x)

h
(13.3)

has a removable discontinuity at 0 and by defining D(0) = f ′(x) becomes

continuous. This leads to the next theorem, which is theoretical in character

but needed at many practical occasions.

Theorem 13.1 The function f is differentiable at x if and only if

there exists a function D continuous at zero such that Equation (13.3)

holds. If so then D(0) = f ′(x).

Remark 13.3 This theorem as well the next two are valid in the complex

domain.

From this theorem it follows immediately:

Theorem 13.2 If a function has a finite derivative at a point then

the function is continuous at this point.

Proof. As h → 0, Equation (13.3) yields f(x + h) − f(x) → D(0)0 = 0

so f is continuous at x. �

Theorem 13.3 If f ′(x) and g′(x) exist and c is a constant then

[cf(x)]
′
= cf ′(x), (13.4)

[f(x) + g(x)]
′
= f ′(x) + g′(x), (13.5)

[f(x)g(x)]
′
= f ′(x)g(x) + f(x)g′(x). (13.6)



Chapter 14

Elementary Functions

In this chapter we lay the proper foundations for the exponential
and logarithmic functions, for trigonometric functions and their
inverses. We calculate derivatives of these functions and use this
for establishing important properties of these functions.

14.1 Introduction

We have already mentioned that some theorems from the previous chapter

are valid for differentiation in the complex domain. Specifically, this is so for

Theorem 13.1 and 13.2, for basic rules of differentiation in Theorems 13.3,

13.5 and for the chain rule, Theorem 13.4. In contrast, Theorem 13.7 makes

no sense in the complex domain since the concept of an increasing function

applies only to functions which have real values. However, part (iii) of

Theorem 13.7 can be extended as follows.

Theorem 14.1 For a ∈ C and R > 0 denote by S the disc

{z; |z − a| < R} or the whole complex plane C. If f ′(z) = 0 for all

z ∈ S then f is constant in S.

Proof. For t ∈ [0, 1] let Z = tz1 + (1 − t)z2. If z1 and z2 are in S so is

Z. Let F : t 7→ f(Z), F1(t) = <F (t) and f2(t) = =F (t). Then

F ′(t) = f ′(Z)(z1 − z2) = 0.

Consequently F ′
1(t) = F ′

2(t) = 0. By (iii) of Theorem 13.7 both F1 and F2

are constant in [0, 1], hence f(z1) = f(z2) and f is constant in S. �

An easy consequence of this Theorem is: f : C 7→ C is a polynomial of

degree at most n if and only if f (n+1)(z) = 0 for z ∈ C.
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Definition 15.1 (Riemann Sum) With a function f : [a, b] 7→ C
and a tagged division TX we associate the sum

R(f, TX) =
n∑

i=1

f(Xi)(ti − ti−1)

This sum is called a Riemann sum, or more explicitly the Riemann

sum corresponding to the function f and the tagged division TX .

If no confusion can arise we shall abbreviate R(f, TX) to R(f) or

R(TX) or even just R. We shall only do this if the objects left out in

the abbreviated notation (like TX in R(f)) are fixed during the discussion.

a tk-1
Xk tk b

Fig. 15.1 A Riemann sum

The geometric meaning of R is indicated by Figure 15.1 for a non-

negative function f . The sum R is simply the area of the rectangles which

intersect the graph of f . Our intuition leads us to believe that, for a

non-negative f , as a tagged division becomes finer and finer the sums R
approach the area of the set {(x, y); a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.



Index of Maple commands
used in this book

The following table provides a brief description of the Maple commands

used in this book, together with the pages on which they are described, and

some of the pages on which they are used.

Most of the commands in the following table are set in the type used

for Maple commands throughout this book, such as collect. Any which

are set in normal type, such as Exit, are not, strictly, Maple commands,

but are provided here to assist in running a Maple session.

Table A.1: List of Maple commands used in this book

Command Description Pages

abs(x) The absolute value of the number x 75

annuity Calculates quantities relating to annuities:

requires the finance package to be loaded

31

Apollonius Calculates and graphs the eight circles

which touch three specified circles: requires

the geometry package to be loaded

30

assume Make an assumption about a variable:

holds for the remainder of the worksheet (or

until restart)

112

assuming Make an assumption about a variable:

holds only for the command it follows

111

binomial Evaluates the binomial coefficient 151

ceil(x) The ceiling of x (the smallest integer not

less than x)

75, 118

changevar Carry out a change of variables in an integral 474

collect Collect similar terms together 24, 26

combinat A collection of commands for solving

problems in combinatorial theory: loaded

by using the command with(combinat)

37

combine Combine expressions into a single expression 25, 26

conjugate The complex conjugate z̄ of a complex

number z

199

Continued on next page
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514 Index of Maple commands

List of Maple commands (continued)

Command Description Pages

convert Convert from one form to another 17, 17, 173,

184

cos(x) The trigonometric function cosx 75

diff Differentiate a function 361

D(f)(a) Evaluates the derivative of the function f at

x = a

359

Digits Set the number of digits used in calculations 15, 16

divisors Find all the divisors of an integer: requires

the numtheory package to be loaded

30, 215

erf(x) The error function:

erf(x) =
2√
π

∫ x

0

e−x2

dx

465

evalc Changes a complex valued expression into

the form a+ bı

199, 203

evalf Evaluate an expression in numerical terms 16, 17, 141

Exit Exit from Maple session 8

exp(1) The base of natural logarithms:

e = 2.7182818284 . . .

12

exp(x) The exponential function ex 75

expand Expand an expression into individual terms 21, 25, 26

factor Factorise a polynomial 22, 26, 187

Factor The same as factor except that

calculations are carried out in a field

modulo a prime p

189

finance A collection of commands for financial

calculations: loaded by using the command

with(finance)

31

floor(x) The floor of x (the largest integer not greater

than x)

75, 118

fsolve Find numerical solution(s) of an equation 94, 209,

210

geometry A collection of commands for solving

problems in geometry: loaded by using the

command with(geometry)

30

Continued on next page
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List of Maple commands (continued)

Command Description Pages

int Integrate a function 443

intersect Intersection of two sets 38

intparts Carry out an integration by parts 470

iquo The quotient when one integer is divided by

another

29

irem The remainder when one integer is divided

by another

29

is Test the value of a Boolean function 80

isolve Find integer solutions of equations 27, 28

ithprime Finds the ith prime number 188

ln(x) The logarithmic function lnx 75

log(x) The logarithmic function logx (the same as

lnx)

75

max(x,y,z) The maximum of two or more real numbers 75

map(f,S) Map elements of the set S into another set

by the function f

377

min(x,y,z) The minimum of two or more real numbers 75

minus Difference of two sets 38

nops Counts the number of items in a list or set 40

normal Collects a sum of fractions over a common

denominator

23, 26

numtheory A collection of commands for solving

problems in number theory: loaded by

using the command with(numtheory)

30

op Select one or more items from a list or set 41, 81

Pi The value of π: 3.1415926535 . . . 12

plot Plot a function 81

powerset Finds the sets comprising the power set of a

given set: requires the combinat package to

be loaded

37

product The product of a number of terms 143

quo Quotient when one polynomial is divided by

another

29, 176

Continued on next page
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List of Maple commands (continued)

Command Description Pages

Quo The same as quo except that calculations

are carried out in a field modulo a prime p

177

rationalize Rationalise a result with a complicated

denominator

27

rem Remainder when one polynomial is divided

by another

29, 176

Rem The same as rem except that calculations

are carried out in a field modulo a prime p

177

remove Remove one or more items from a set or a

list

81

restart Reset the Maple environment to its starting

setting with no variables defined

19

roots Finds rational roots of a polynomial 216

select Selects some elements from a list 80

seq Used to generate an expression sequence 41

simplify Simplify a complicated expression 22, 26, 142,

143

sin(x) The trigonometric function sinx 75

solve Find a solution of an equation 108, 209

sort Sort a sequence of terms 24, 26

spline Approximate a function by straight lines or

curves

352

sqrt(x) The square root function 11, 12, 13,

75,

subs Substitutes a value, or an expresseion, into

another expression

26

sum The sum of a series 141, 143,

289

surd Finds the real value of an odd root of a real

number

256

tan(x) The trigonometric function tanx 75

tau The number of factors of an integer 30

taylor Used to find the product of two polynomials,

or a Taylor series

173, 183

Continued on next page
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List of Maple commands (continued)

Command Description Pages

union Union of two sets 38

with The command with(newpackage) loads the

additional Maple commands available in the

package newpackage

30

worksheets Using worksheets in Maple 5, 6


