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Abstract

The set G(n) of unlabelled simple graphs of order n is a
poset with partial ordering G ≤ H whenever G is a spanning
subgraph of H. On the website

www.maths.uq.edu.au/~pa/research/poset9.html

we have made available a tabulation of the Hasse diagram for
G(9), a digraph of order 274668 and size 4147388, extending
our recent tabulations for G(n) with 4 ≤ n ≤ 8. The present
paper is a descriptive summary of features of G(9) derived from
the tabulation, including: the maximum number of graphs in
G(9) with the same degree sequence is 3020, corresponding to
2132435261; there are 36 self-complementary graphs in G(9),
but 10794 graphs with self-complementary degree sequences;
there are 49 graphs in G(9) that are edge-transitive, and 134996
that have no edge-symmetry; the maximum number of imme-
diate successors of a graph in G(9) is 28, and 12 graphs attain
this maximum; the number of immediate successors of a graph
in G(9) is distributed unimodally, with peak at 16 attained by
25010 graphs. All underlying data are available on the website.
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1 Introduction

The unlabelled simple graphs of finite order are the fundamental
structures of graph theory. A natural way to view the structural
relationships between the graphs of order n is to regard the set G(n)
of all such graphs as a partially ordered set (poset) with partial
ordering G ≤ H whenever G is isomorphic to a subgraph of H. It is
usual to regard all graphs in G(n) as having the same vertex set, so
G ≤ H can be read to mean that G is a spanning subgraph of H.

In his very useful Field Guide to Simple Graphs [7], Steinbach
published the structure of the posets G(n) for n ≤ 7. It was natural
for him to stop at order 7 because of space considerations: there
are just 52 graphs of order 5 or less, but there are 156 graphs of
order 6 and 1044 graphs of order 7. The total number of immediate
predecessors and successors of any graph in G(7) averages almost 13,
so a substantial amount of space is needed to list the structure of
G(7). In fact, Steinbach listed only the first half of this structure,
since the second half can be deduced by simple complementation
calculations, yet his tabulation still required 11 pages. There were a
few sporadic errors in his tabulations, which were corrected in [1].

We recently discussed [2] the poset structure of G(n) as far as
n = 8. This extends Steinbach’s work by a substantial order of mag-
nitude, since there are 12346 graphs in G(8), and the total number
of immediate predecessors and successors of each one averages just
over 20. Consequently, our listing of the structure of G(8) runs to
421 pages. This is far too extensive to warrant hardcopy publication,
so we have made it available on the website [3]:

www.maths.uq.edu.au/~pa/research/posets4to8.html

where we also include the corresponding tabulations for smaller or-
ders. In [2] we confined ourselves to summary data and commentary.

In order to explicitly specify the structure of G(n) it is necessary
to identify the graphs of order n. For his work, Steinbach assigned a
number N(G) to each graph G of order n ≤ 7; we call this the Stein-
bach number of G. In their Atlas of Graphs [5], Reid and Wilson use
a different numbering scheme. One advantage of Steinbach numbers
over those of Reid and Wilson is that they reflect the structure of
G(n) under complementation. If Gc is the complement of the graph
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G, and Gc 6= G, the Steinbach numbers (with very few exceptions)
satisfy the complementation rule

N(G) +N(Gc) = |G(n)|+ 1.

They also reflect other poset-related structural properties of the
graphs, so are well-suited to describing the poset structure of G(n).

In [2] we introduced “SEAM numbering”, a slight adaptation of
Steinbach numbering which closely follows the spirit of Steinbach’s
rules, but extends them so as to provide in principle a unique ob-
jective numbering N∗(G) for every finite graph G, no matter what
the order. The basis for SEAM numbering is assignment of a unique
signature Σ(G) to every finite graph G, followed by sorting of graphs
in G(n) based on signature in a way that preserves the complemen-
tation rule for all graphs that are not self-complementary. In many
cases the SEAM number N∗(G) and Steinbach number N(G) coin-
cide, and in all other cases they are very nearly equal. Our website
[3] lists all graphs of order n ≤ 8 by signature and SEAM number,
with cross-referencing to Steinbach numbers for orders n ≤ 7 (as far
as Steinbach numbering is in publication).

We have now extended the earlier work to graphs of order 9, with
a tabulation of all graphs in G(9) by signature and SEAM number,
and a specification of the poset structure of G(9) by listing the im-
mediate predecessors and immediate successors of each graph. These
tabulations are available on the website [4]:

www.maths.uq.edu.au/~pa/research/poset9.html

There are 274668 graphs of order 9, so extending our previous
work to G(9) represents yet another substantial increase in order of
magnitude. Indeed, a hardcopy of our listing of the poset structure
of G(9) would require some 14000 pages! As a practical solution to
making it available, we have placed a text format version on the
website [4]. Here we shall confine ourselves to some summary data
and commentary, first regarding degree sequences of order 9 graphs,
and then regarding the poset structure of G(9).

2 Degree sequences of graphs of order 9

Because the degree sequence of a graph is an important early part
of its signature, it is relatively easy to use our tabulation of G(9),
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ordered by signature and SEAM number, to derive information about
the degree sequences of the graphs in G(9), extending results for
smaller orders in [2].

If there are exactly r graphs in G(n) with the same degree se-
quence d, we call r the multiplicity of d. Let f(r) denote the number
of degree sequences for G(n) with multiplicity r. In [2] we published
the sequences 1f(1)2f(2) · · · kf(k) · · · for 4 ≤ n ≤ 8, each being the de-
gree sequence multiplicity distribution for the appropriate G(n). The
corresponding data for G(9) is included on the website [4]. It is too
extensive to give here, but the last few terms of the distribution are

· · · 18312 20272 22182 22242 30201.

What is the average number of graphs of order n with the same
degree sequence? The standard measures of central tendency (mean,
median and mode) each give interesting information about the degree
sequence multiplicity distribution for G(n), so we give all three in
Table 1. (Means are given correct to one decimal place.)

Table 1: Average multiplicity of degree sequences for G(n)

n 1 2 3 4 5 6 7 8 9

mean 1.0 1.0 1.0 1.0 1.1 1.5 3.1 10.2 63.0
median 1 1 1 1 1 1 2 3 6
mode 1 1 1 1 1 1 1 1 1

For example, degree sequences of order 9 have a mean of 63 re-
alizations, whereas half the order 9 degree sequences have 6 or fewer
realizations, and there are more order 9 degree sequences with a
unique realization than there are with r realizations for any r > 1.
It seems reasonable to conjecture that for degree sequences of any
order n ≥ 1 the modal multiplicity will be 1, while the median and
mean multiplicities will both increase with n, the latter much more
rapidly than the former.

The degree sequence multiplicity distribution for G(9) enables us
to extend Theorem 1 of [2] as follows:
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Theorem 1 For each G(n) with n ≥ 1, the number of distinct degree
sequences is

1, 2, 4, 11, 31, 102, 342, 1213, 4361, · · ·
The maximum number of graphs with the same degree sequence is

1, 1, 1, 1, 2, 5, 20, 184, 3020, · · ·
The sequences with maximum multiplicity for 5 ≤ n ≤ 9 are

n = 5, f(2) = 3: 1223, 112331, 2332

n = 6, f(5) = 2: 122232, 223242

n = 7, f(20) = 2: 11223341, 21334251

n = 8, f(184) = 3: 22334251, 21334351, 21324352

n = 9, f(3020) = 1: 2132435261.

In particular, the numbers of distinct degree sequences confirm
the terms for n ≤ 9 in sequence A004251 of Sloane’s Encyclopedia of
Integer Sequences [6].

It is noteworthy that the degree sequences 112331, 21334351 and
2132435261 appearing in Theorem 1 are all self-complementary. (The
other eight sequences in Theorem 1 are complementary pairs.) Any
self-complementary graph must have a self-complementary degree
sequence, and it is well-known that G(n) contains self-complementary
graphs precisely when n ≡ 0 or 1 (mod 4). Indeed, a degree sequence
of order n can only be self-complementary if n ≡ 0 or 1 (mod 4),
since only in such cases does Kn have an even number of edges.
Note that 1222 is a self-complementary sequence of order 4, and all
degree sequences of order 4 have multiplicity 1, so Theorem 1 leads
us to conjecture that whenever there is a self-complementary degree
sequence of order n, there is at least one such sequence that attains
maximum multiplicity among all order n degree sequences.

These observations lead us to further examine self-complementary
degree sequences. If G is a graph with a self-complementary degree
sequence, G need not be self-complementary. Let d be any self-
complementary degree sequence, then the self-complementary mul-
tiplicity r∗ of d is the number of nonisomorphic self-complementary
graphs with degree sequence d. Table 2 lists all self-complementary
degree sequences of order n ≤ 9, their multiplicity r, and their self-
complementary multiplicity r∗.
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Table 2: Self-complementary degree sequences and their multiplicities

n Degree sequence r r∗ n Degree sequence r r∗

4 1222 1 1 9 1121456171 24 0
5 122132 1 1 1133415371 84 0

112331 2 0 1132435271 220 0
25 1 1 1131455171 86 0

8 12324262 1 1 114771 8 0
112231415261 8 0 244164 2 2
112132425161 42 0 2331415163 44 0
11334361 22 0 234363 24 0
2454 2 2 2232415262 560 6
23314153 20 0 2231435162 708 0
22324252 149 3 224562 98 4
21334351 184 0 2133415361 1234 0
3444 50 4 2132435261 3020 0

9 1232415272 1 1 2131455161 1086 0
1231435172 2 0 214761 58 0
124572 1 1 344154 405 9
11223141516271 8 0 334353 1524 0
1122436271 8 0 324552 1147 9
11213241526171 90 0 314751 192 0
11213143516171 144 0 49 16 4

From Table 2, we deduce

Theorem 2 For n ≥ 1, the number of graphs of order n with self-
complementary degree sequences is

1, 0, 0, 1, 4, 0, 0, 478, 10794, · · ·

These results show that a decreasingly small proportion of the
graphs with self-complementary degree sequences are actually self-
complementary graphs. For example, even though 10794 graphs
in G(9) have self-complementary degree sequences, only 36 of these
graphs are self-complementary. The self-complementary multiplicity
distribution for G(n) is the sequence 0f

∗(0)1f
∗(1) · · · kf∗(k) · · ·, where

f∗(k) is the number of self-complementary degree sequences of order
n with self-complementary multiplicity r∗ = k, for k ≥ 0. As usual,
in practice we omit terms for which f∗(k) = 0. Evidently the num-
ber of self-complementary degree sequences for G(n) is Σkf

∗(k), and
the number of self-complementary graphs in G(n) is Σkkf

∗(k). From
Table 2, we have
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Theorem 3 For n ≥ 1, the number of self-complementary graphs of
order n is

1, 0, 0, 1, 2, 0, 0, 10, 36, · · ·

and the self-complementary multiplicity distribution for G(n) is

n = 4: 11

n = 5: 0112

n = 8: 0511213141

n = 9: 0191221426192.

In particular, the numbers of self-complementary graphs confirm
the terms for n ≤ 9 in sequence A000171 of Sloane’s listing [6]. The
SEAM numbers of the self-complementary graphs of order n ≤ 9 are

1:1, 4:6, 5:17..18, 8:6169..6178, 9:137317..137352.

A degree sequence d is uniquely graphic if it has multiplicity
r = 1, that is, there is a unique graph with degree sequence d.
The size distribution of uniquely graphic degree sequences of order
n is the sequence 0a(0)1a(1) · · · ka(k) · · ·, where a(k) is the number of
uniquely graphic degree sequences for graphs in the level set G(n, k),
that is, the set of graphs with n vertices and k edges. Since any
degree sequence and its complement have equal multiplicity, the size
distribution of uniquely graphic degree sequences must be centrally
symmetric. We give these distributions for n ≤ 9 in Table 3, trun-
cating the longer sequences midway.

Table 3: Size distribution of uniquely graphic degree sequences

n Size distribution

1 01

2 0111

3 01112131

4 01112233425161

5 011122344454 · · ·
6 011122354557677888 · · ·
7 01112235465861071281191510141114 · · ·
8 01112235475961171681692010251122122713271429 · · ·
9 0111223547510612717820927102911341238134114471554165417491860 · · ·
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While one expects degree sequences of very small or very large
size to have unique realizations, it is of interest to note that there
are actually uniquely graphic degree sequences of every size. Indeed,
at each n ≥ 1 with n ≡ 0 or 1 (mod 4) there are self-complementary
degree sequences which are uniquely graphic: clearly the unique real-
izations of such sequences are among the self-complementary graphs.
Table 3 also yields the following global information:

Theorem 4 For n ≥ 1, the number of uniquely graphic degree se-
quences of order n is

1, 2, 4, 11, 28, 72, 170, 407, 956, · · ·

Note that the size distribution of uniquely graphic degree se-
quences of order 9 is not unimodal. The maximum number of such
degree sequences of a given size is 60, and does occur at the central
size of 18, but there are 54 such degree sequences at each of the sizes
15 and 16, while at the intermediate size 17 there are slightly fewer,
namely 49. The corresponding phenomenon is already apparent at
orders 7 and 8.

3 Poset structure of graphs of order 9

The poset structure of G(9) is conveniently specified by the Hasse
diagram HG(9), a digraph with G(9) as its vertex set, and a directed
edge G → H whenever H is an immediate successor of G (equiva-
lently, whenever G is an immediate predecessor of H), so H = G+ e
for some edge e. On the website [4] we describe HG(9) by listing,
for each G ∈ G(9), all the immediate predecessors and immediate
successors of G.

For any G ∈ G(9), the outdegree d+(G) in HG(9) is the num-
ber of immediate successors of G, the indegree d−(G) is the num-
ber of immediate predecessors of G, and d(G) = d+(G) + d−(G) is
the full degree. If n+(k,m) is the number of graphs G ∈ G(9,m)
of order 9 and size m with outdegree d+ = k, then the sequence
0n

+(0,m)1n
+(1,m) · · · kn+(k,m) · · · is the outdegree sequence for level m

of HG(9), and if n+(k) = Σmn
+(k,m) is the total number of graphs

in HG(9) with outdegree k, then 0n
+(0)1n

+(1) · · · kn+(k) · · · is the out-
degree sequence for HG(9). Similarly we define indegree sequences
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and full degree sequences for each level of HG(9), and for the whole
digraph.

Let Gc denote the complement of any graph G ∈ G(9). If G→ H
is a directed edge in HG(9), so is Hc → Gc. Hence d+(G) = d−(Gc)
and d(G) = d(Gc). Thus if m+m′ = 36 then the outdegree sequence
for level m of HG(9) is equal to the indegree sequence for level m′,
and the two levels have equal full degree sequences. Consequently, on
the website [4] we list the outdegree sequences, indegree sequences
and full degree sequences for each level m ≤ 18, and for the whole
digraph. Table 4 below gives summary data for the degree sequences
for the levels of HG(9), and for the whole digraph.

For example, the outdegree information in line m = 8 of Table 4
(the level which contains the trees of order 9) shows that there are
4803 edges in HG(9) between levels 8 and 9, and the graphs in level
8 have between 1 and 28 immediate successors (1-extensions) in level
9. The indegree information in line m = 8 shows that there are 1767
edges in HG(9) between levels 7 and 8, and the graphs in level 8
have between 1 and 8 immediate predecessors (1-reductions) in level
7. The full degree information in linem = 8 shows that there are 6570
edges in HG(9) with one end in level 8, and the graphs in level 8 have
between 2 and 36 neighbours in HG(9). Clearly, the total outdegree
of any level m is equal to the total indegree of level m+1. Moreover,
the total indegree of level 18 is equal to the total outdegree of that
level because if G is any order 9 graph of size 18, its complement
Gc is also an order 9 graph of size 18, and d−(G) = d+(Gc). The
summary line at the foot of Table 4 refers to HG(9) as a whole.

We can now extend Theorem 2 of [2] to include data for HG(9).

Theorem 5 For n ≥ 1, the order of the Hasse diagram HG(n) for
graphs of order n is

1, 2, 4, 11, 34, 156, 1044, 12346, 274668, · · ·

and the size of HG(n) is

0, 1, 3, 14, 74, 571, 6558, 125066, 4147388, · · ·

If G has indegree 1 in HG(9), then G is edge-transitive. Since
the empty graph Kc

9 is trivially edge-transitive, it follows from Table
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4 that there is at least one edge-transitive graph of order 9 and
size m for every m < 22 except for m ∈ {11, 13, 17, 19}, and also for
m ∈ {24, 27, 28, 36}. More explicitly, let t(m) be the number of edge-
transitive graphs of order n and size m, and let 0t(0)1t(1) · · ·mt(m) · · ·
be the size distribution sequence for edge-transitive graphs of order
n. Table 5 gives these size distribution sequences for n ≤ 9.

Table 4: Degree sequences for HG(9)

Size Outdegree Indegree Full degree
m min max total min max total min max total

0 1 1 1 0 0 0 1 1 1
1 2 2 2 1 1 1 3 3 3
2 3 4 7 1 1 2 4 5 9
3 2 7 21 1 2 7 3 9 28
4 2 9 65 1 3 21 3 12 86
5 3 14 200 1 4 65 4 18 265
6 2 23 612 1 6 200 3 29 812
7 3 28 1767 1 7 612 4 35 2379
8 1 28 4803 1 8 1767 2 36 6570
9 1 27 12065 1 9 4803 2 36 16868
10 2 26 27713 1 10 12065 3 36 39778
11 2 25 57770 2 11 27713 4 36 85483
12 1 24 108764 1 12 57770 3 36 166534
13 3 23 184424 2 13 108764 5 36 293188
14 2 22 281454 1 14 184424 3 36 465878
15 1 21 386410 1 15 281454 3 36 667864
16 1 20 477240 1 16 386410 3 36 863650
17 3 19 530376 2 17 477240 5 36 1007616
18 1 18 530376 1 18 530376 2 36 1060752

Whole 0 28 4147388 0 28 4147388 1 36 8294776

Table 5: Size distribution for edge-transitive graphs in G(n)

n Size distribution sequence

1 01

2 0111

3 01112131

4 01 11 22 32 41 61

5 01 11 22 32 42 51 62 101

6 01 11 22 33 43 52 64 81 91 101 121 151

7 01 11 22 33 43 52 65 71 81 91 102 122 151 211

8 01 11 22 33 44 52 66 72 83 91 102 125 152 161 211 241 281

9 01 11 22 33 44 52 67 72 84 93 102 126 141 152 161 182 201 211 241 271 281 361
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Table 5 yields the following extension of Theorem 3 of [2].

Theorem 6 For n ≥ 1, the number of edge-transitive graphs of or-
der n is

1, 2, 4, 8, 12, 21, 26, 38, 49, · · ·

If every automorphism of G fixes every edge, we say that G has no
edge-symmetry. (Such a graph can have non-identity automorphisms,
but every automorphism must fix every vertex in any component of
order greater than 2, and there can be at most one component of
order 2.) If G ∈ G(9,m), it has no edge-symmetry if its indegree
in HG(9) is m. It follows from Table 4 that there is at least one
graph of order 9 and size m with no edge-symmetry if m ≤ 1 or
6 ≤ m ≤ 28. More explicitly, let u(m) be the number of graphs
in G(n,m) with no edge-symmetry and let 0u(0)1u(1) · · ·mu(m) · · · be
the size distribution sequence for graphs of order n with no edge-
symmetry. As usual, in practice we omit terms with zero exponent.
Table 6 lists these sequences for n ≤ 9.

Table 6: Size distribution for graphs in G(n) with no edge-symmetry

n Size distribution sequence

1 01

2 0111

3 0111

4 01 11

5 01 11

6 01 11 61 73 82 91

7 01 11 62 76 812 924 1030 1128 1224 1314 144 152

8 01 11 62 78 824 971 10160 11285 12433 13559 14604 15556 16434 17285 18157

1969 2019 212 221

9 01 11 62 79 830 9110 10344 11900 122074 134140 147182 1510986 1614816 1717677

1818764 1917694 2014794 2110979 227171 234088 242021 25841 26286 2775 2811

Table 6 yields the following companion result to Theorem 6:

Theorem 7 For n ≥ 1, the number of order n graphs with no edge-
symmetry is

1, 2, 2, 2, 2, 9, 148, 3671, 134996, · · ·
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In [2] we defined the productivity of a graph G ∈ G(n) as the
number of non-isomorphic 1-extensions of G; this is the same as
the outdegree of G in HG(n), since the 1-extensions are precisely
the immediate successors of G in the poset. Table 7 extends the
productivity information in Table 5 of [2].

Table 7: Productivities of order n graphs

n Outdegree sequence of HG(n)

1 01

2 0111

3 0113

4 01 17 22 31

5 01 111 29 37 46

6 01 120 224 333 433 519 611 710 84 91

7 01 125 254 392 4133 5140 6139 7130 8107 978 1058 1139 12261316144152

8 01 137 2110 3235 4428 5600 6798 7997 81135 91196 101176 111124

121051 13967 14826 15652 16467 17293 18158 1971 2021 212 221

9 01 148 2190 3495 41103 51975 63307 75100 87347 99852 1012461 1114991 1217411

1319809 1422017 1523875 1625010 1724816 1823124 1919994 2015792 2111321

227270 234108 242028 25847 26287 2777 2812.

Hence we can extend Theorem 3 of [2] as follows:

Theorem 8 For n ≥ 1, the number of maximally productive graphs
in G(n), with their productivity, is

1:0, 1:1, 3:1, 1:3, 6:4, 1:9, 2:15, 1:22, 12:28, · · ·

We noted in Theorem 4 of [2] that the productivity sequences
for each G(n) with n ≤ 8 have indices which are unimodal. This
extends:

Theorem 9 Each G(n) with n ≤ 9 has an index unimodal produc-
tivity sequence. The peak supports and index peaks are

0:1, 1:1, 1:3, 1:7, 1:11, {3,4}:33, 5:140, 9:1196, 16:25010.

The total outdegree of level m in HG(n) corresponds in [2] to
what we called the productivity of level m in G(n). We noted in
Theorem 4 of [2] that the productivities of the levels of G(n) form a
unimodal sequence for each n ≤ 8. Table 4 shows that this continues
for n = 9:
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Theorem 10 The productivities of the levels of G(9) form a uni-
modal sequence, with peak value 530376 at levels 17 and 18.

This completes our descriptive summary of properties of the poset
G(9). Much more can be deduced from the tables and data on our
website [4].
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