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Abstract. Steinbach’s useful tabulations of the posets of graphs of orders
5, 6 and 7 (in his Field Guide to Simple Graphs) are marred by a sparse
scattering of errors. We list all corrections needed, and for convenience
provide the full, corrected data at
http://www.maths.uq.edu.au/~pa/research/steinbach.html.



1 Introduction

How many unlabelled simple graphs have degree sequence 1222333, and
what do they all look like? How many unlabelled simple graphs with 7
vertices and 10 edges (order 7, size 10) are connected, and which among
them are hamiltonian?

Peter Steinbach’s Field Guide to Simple Graphs [2,3] is a very handy tool
that enables the practitioner of graph theory to answer such questions
quickly and conveniently. However, in the course of recent work we became
aware of a number of errors in Steinbach’s subgraph tabulations. Subse-
quently we independently recalculated the corresponding tables, identified
all the discrepancies, and verified that each discrepancy was a genuine cor-
rection. Our purpose in the present note is to report these corrections so
that all who wish to make full use of Steinbach’s tables can confidently do
so. In a private communication, Peter Steinbach has indicated to us that
the corrections will be incorporated in future printings of the Field Guide.

We note that Read and Wilson’s Atlas [1] is also handy for answering
questions like those in our opening paragraph. However, Steinbach’s or-
ganisation and numbering system make [2,3] more convenient for some
applications, especially those in which subgraphs and complementation are
relevant.

2 Posets of Graphs (Orders 5,6,7)

To introduce the corrections in their proper context, we need some notation
and terminology. Let G and H be any unlabelled simple graphs of order
n. If adding a suitable finite set E of edges to G produces a graph G + E
which is isomorphic to H, then H is an extension (spanning supergraph)
of G, or equally, G is a reduction (spanning subgraph) of H, and we write
G < H. If |E| =1, then H is a 1-extension of G, and G is a l-reduction
of H. If G < H, the complements satisfy H¢ < G¢. Let G(n) be the
partially ordered set of all unlabelled simple graphs of order n, with this
partial ordering. The poset G(n) has the complete graph K,, as maximum
element, and its complement the empty graph K as minimum element.
The mth level set G(n, m), comprising all unlabelled simple graphs of order
n and size m, is a maximal independent subset in G(n). Every maximal
ascending chain in G(n) begins with K¢ and ends with K, and contains
exactly one graph from each level set.

Steinbach specifies the posets G(n), n < 7 on pp. 90-107 of [2,3]. Below we



report corrections for G(5), G(6) and G(7). Steinbach assigns numbers to
the graphs in each of these posets so that the 1-reductions of any graph G
have smaller numbers than G, and the l-extensions have larger numbers.
Moreover, in G(6) any graph and its complement have numbers x and z°
satisfying « + 2¢ = 157 (since |G(6)| = 156); in G(7) the corresponding
identity is = + ¢ = 1045. In G(5) most complementary pairs satisfy = -+
¢ = 35, but here the situation is complicated by the presence of two self-
complementary graphs (numbered 17 and 19); the graphs numbered 16, 17
and 18 satisfy « 4+ ¢ = 34. Steinbach specifies G(5) and G(6) by listing all
1-reductions and l-extensions of each graph. For G(7), the corresponding
lists are given explicitly only for graphs with numbers z < 522, thereby
saving 11 pages; the lists for x > 523 can be readily deduced by using
complementation.

The errors in Steinbach’s tables occur in the lists of 1-reductions and/or 1-
extensions of certain graphs. For each such graph we specify the corrections
needed simply by giving the correct list of all 1-reductions and 1-extensions.
The reader will easily be able to apply these corrections to any copy of [2,3].

A few errors present in [2] are corrected in [3]. For example, graph 6 has
graph 10 as a l-extension in G(6). This fact is omitted from the lists of
1-reductions and 1-extensions of both graph 6 and graph 10 on p. 94 of [2],
but is corrected in [3]. Again, the graphs with numbers 513-532 had their
numbers omitted from p. 89 of [2], but this is corrected in [3].

3 Corrections

The following corrections all apply to pp. 93-107 of [2]. With the exception
of the lines for graphs 6 and 10 of G(6), every correction also applies to
[3]. Table 1 gives corrections to G(5), Table 2 gives corrections to G(6) and
Table 3 (at the end of this note) gives corrections to G(7).

Table 1: Corrections to G(5)

18 | 22 | 27 30
1516 1819 | 23 | 27 28 29
16 20 | 25 | 28
15181920 | 26 | 28 29 30




Table 2: Corrections to G(6)

3 6| 10121316
567 10 | 19 20 21 22 28
3540 41 44 59 | 99 100 101 102
36 46 49 64 | 79 89 90 97
36 45 46 50 51 70 | 79 83 84 85 88 89
38 42 46 51 52 71 | 80 8589 91
38 46 47 48 49 50 52 72 | 80 81 83 86 87 89 90 96
727577 | 81 | 103 106 109
55 60 61 64 97 | 108 116 122
56 59 60 69 | 102 | 121 122 123
129 135 136 137 138 | 147 | 150 151 152
141 144 145 147 | 151 | 154

4 Website Availability

As a public service, we have placed correct tables for G(5), G(6) and G(7)
on the website
http://www.maths.uq.edu.au/~pa/research/steinbach.html.

These tables retain the numbering scheme used by Steinbach. They list the
1-reductions and 1-extensions of each graph of order 5, 6 or 7. To make
the website relatively self-contained, we have also specified the Steinbach
reference number, the degree sequence and the edge set of each graph of
order 5 or 6, and of each graph of order 7 and size at most 10. (Comple-
mentation and the identity = + 2¢ = 1045 readily yield the corresponding
information for any order 7 graph of size greater than 10.)
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